
ЕВРАЗИЙСКИЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (EACC)

EURO-ASIAN COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (EASC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСТ 8.033 (проект) первая редакция

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ АКТИВНОСТИ РАДИОНУКЛИДОВ, УДЕЛЬНОЙ АКТИВНОСТИ РАДИОНУКЛИДОВ, ПОТОКА И ПЛОТНОСТИ ПОТОКА АЛЬФА-, БЕТА-ЧАСТИЦ И ФОТОНОВ РАДИОНУКЛИДНЫХ ИСТОЧНИКОВ

Настоящий проект стандарта не подлежит применению до его принятия

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ АКТИВНОСТИ РАДИОНУКЛИДОВ, УДЕЛЬНОЙ АКТИВНОСТИ РАДИОНУКЛИДОВ, ПОТОКА И ПЛОТНОСТИ ПОТОКА АЛЬФА-, БЕТА-ЧАСТИЦ И ФОТОНОВ РАДИОНУКЛИДНЫХ ИСТОЧНИКОВ

State verification schedule for means measuring radionuclide activity, specific radioactivity, flux and flux density of α -, β -particles and photons of radionuclide sources

_		
Дата введения	-	-

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены".

Сведения о стандарте

За принятие стандарта проголосовали:

1 РАЗРАБОТАН Федерал	пьным государст	венным унитарным	и предприяти	ЭМ
"Всероссийский научно-и	сследовательский	й институт	метролог	ии
им. Д.И. Менделеева" (ФГУП "ВН	НИИМ им. Д.И. Ме	енделеева").		
2 ВНЕСЕН межгосударст	венным техничес	ким комитетом МТ	К 206 «Эталон	НЫ
и поверочные схемы».				
3 ПРИНЯТ Евразийски	м советом по	стандартизации,	метрологии	И
сертификации (протокол от	N).		

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации

4 B3AMEH ΓΟCT 8.033-96

1 Область применения

Настоящий стандарт распространяется на государственную поверочную схему для средств измерений активности радионуклидов, удельной активности радионуклидов, потока и плотности потока ионизирующих частиц (альфа-, бета-частиц и фотонов рентгеновского и гамма-излучений) радионуклидных источников и устанавливает основные метрологические характеристики государственного первичного эталона и порядок передачи единиц:

активности радионуклидов - беккереля, Бк;

удельной активности радионуклидов - беккереля на килограмм (грамм), Бк·кг⁻¹ (Бк·г⁻¹);

объемной активности радионуклидов - беккереля на кубический метр (литр), Бк⋅м⁻³ (Бк⋅л⁻¹);

поверхностной активности радионуклидов - беккереля на квадратный метр (сантиметр), Бк·м⁻²(Бк·см⁻²);

потока и плотности потока альфа-частиц - альфа-частиц в секунду, с⁻¹, и альфа-частиц в секунду на квадратный метр (сантиметр), с⁻¹·м⁻² (с⁻¹·см⁻²);

потока и плотности потока бета-частиц - бета-частиц в секунду, с⁻¹, и бета-частиц в секунду на квадратный метр (сантиметр), с⁻¹·м⁻² (с⁻¹·см⁻²);

потока и плотности потока фотонов - фотонов в секунду, с⁻¹, фотонов в секунду на квадратный метр (сантиметр), с⁻¹·м⁻² (с⁻¹·см⁻²) от государственного первичного эталона вторичным и рабочим эталонам и при помощи вторичных эталонов и рабочих эталонов средствам измерений с указанием погрешностей и основных методов передачи единиц.

Допускается проводить поверку при помощи эталонов более высокой точности, чем предусмотрено поверочной схемой.

2 Первичный эталон

2.1 Государственный первичный эталон состоит из эталонных установок для воспроизведения единиц:

активности бета-излучающих радионуклидов в диапазоне от $1\cdot10^1$ до $5\cdot10^{12}$ Бк, удельной активности бета-излучающих радионуклидов в диапазоне от $1\cdot10^3$ до $1\cdot10^6$ Бк·г⁻¹, потока бета-частиц радионуклидных источников в диапазоне от 5 до $5\cdot10^4$ с⁻¹;

активности альфа-излучающих радионуклидов в диапазоне от $1\cdot10^1$ до $5\cdot10^{12}$ Бк, удельной активности альфа-излучающих радионуклидов в диапазоне от $1\cdot10^3$ до $1\cdot10^6$ Бк·г⁻¹, потока альфа-частиц радионуклидных источников в диапазоне от 5 до $5\cdot10^4$ с⁻¹;

активности гамма-излучающих радионуклидов в диапазоне от $1\cdot10^2$ до $5\cdot10^{11}$ Бк, удельной активности гамма-излучающих радионуклидов в диапазоне от $1\cdot10^2$ до $5\cdot10^6$ Бк·г $^{-1}$, потока фотонов радионуклидных источников от 5 до $5\cdot10^4$ с $^{-1}$.

Единица удельной активности радионуклидов воспроизводится в растворах путем измерения активности радионуклидов в специальных источниках, изготовленных из раствора известной массы.

2.2 В состав государственного первичного эталона входят:

установка со счетчиками бета-излучения для воспроизведения единиц активности, удельной активности бета-излучающих радионуклидов и потока бета-частиц методом 4(2) πβ-счета УЭАП-1;

установка со счетчиками альфа-излучения для воспроизведения единиц активности, удельной активности альфа-излучающих радионуклидов и потока альфа-частиц методом 4(2) πα-счета и определенного телесного угла УЭАПП-1;

установка со счетчиками альфа-, бета-, гамма-, характеристического рентгеновского излучений для воспроизведения единиц активности, удельной активности радионуклидов со сложными схемами распада методом совпадений УЭА-3;

установка с ионизационной камерой гамма-излучения для воспроизведения единицы активности радионуклидов в источниках гамма-излучения ионизационным методом УЭА-4;

установка с калориметром для воспроизведения единицы активности радионуклидов фотонного излучения и излучения спонтанно делящихся ядер УЭА-5;

установка с жидким сцинтиллятором для воспроизведения единицы активности, удельной активности радионуклидов альфа-, бета-, фотонного излучений методом отношения двойных и тройных совпадений (метод TDCR) УЭА-6;

установка со сцинтиллятором Na(I) для воспроизведения единицы активности, удельной активности радионуклидов фотонного излучения методом 4 тү-счета УЭА-7;

комплект источников бета-излучения на основе радионуклидов ⁹⁰Sr+⁹⁰Y типа СО переменного состава;

эталоны сравнения – стандартные образцы активности, удельной активности радионуклидов различной плотности переменного состава;

весы.

- 2.3 Государственный первичный эталон обеспечивает воспроизведение единиц со следующими составляющими погрешности:
- активности радионуклида (беккереля) среднее квадратическое отклонение (СКО) S_0 от $0.01\cdot10^{-2}$ до $0.2\cdot10^{-2}$, неисключенная систематическая погрешность (НСП) Θ_0 от $0.1\cdot10^{-2}$ до $4\cdot10^{-2}$ (в зависимости от вида радионуклида);
- удельной активности (беккереля на килограмм, беккереля на грамм) S_0 от $0.01\cdot10^{-2}$ до $0.2\cdot10^{-2}$, Θ_0 от $0.01\cdot10^{-2}$ до $3\cdot10^{-2}$ (в зависимости от вида радионуклида);

потока альфа-, бета-частиц и фотонов (частица в секунду, фотон в секунду) - S_0 от $0.01\cdot10^{-2}$ до $0.2\cdot10^{-2}$, Θ_0 от $0.1\cdot10^{-2}$ до $3\cdot10^{-2}$ (в зависимости от вида радионуклида).

2.4 Государственный первичный эталон применяют для передачи указанных единиц вторичным эталонам и рабочим эталонам 1-го разряда - методом прямых измерений, методом сличения при помощи компаратора, методом косвенных измерений, методом непосредственного сличения при помощи радионуклидных источников.

3 Вторичные эталоны

3.1 В качестве вторичных эталонов (рабочих эталонов 0-го разряда) единиц активности радионуклидов, удельной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников применяют:

радионуклидные источники альфа-, бета- и фотонного излучений в диапазоне хранения и передачи единиц:

активности радионуклидов от 4 до 2·10¹¹ Бк;

потока альфа-, бета-частиц и фотонов от 1 до $8\cdot10^{10}$ с⁻¹; плотности потока альфа-, бета-частиц и фотонов от $1\cdot10^{-2}$ до $8\cdot10^{10}$ с⁻¹·см⁻²;

радиометрические установки со счетчиками альфа-, бета-частиц и фотонов (в том числе с применением спектрометров-радиометров со сцинтилляционными и полупроводниковыми детекторами), ионизационными камерами или калориметрами в диапазонах хранения и передачи единиц:

- активности радионуклидов от 1·10¹ до 5·10¹² Бк;
- удельной активности радионуклидов от 2 до 1·10⁶ Бк·г⁻¹;
- потока альфа-, бета-частиц и фотонов от 5 до $5 \cdot 10^4$ с⁻¹;

радионуклидные источники специального назначения: растворы радионуклидов, специальные источники для уникальных, единичных, мелкосерийных эталонов и средств измерений, применяемых в научных исследованиях, экологии, медицине и других областях:

- активность радионуклидов от 1·10¹до 1·10¹² Бк;
- удельная активность радионуклидов от 1·10¹ до 1·106 Бк·г·¹;
- потока альфа-, бета-частиц и фотонов от 5 до 5·10¹¹ с⁻¹.

стандартные образцы (СО) активности, удельной активности радионуклидов в диапазонах хранения и передачи единиц:

- активность радионуклидов от 1·10¹ до 5·10¹² Бк;
- удельная активность радионуклидов от 1·10¹ до 1·10⁶ Бк·г⁻¹.

3.2 Относительные суммарные средние квадратические отклонения вторичных эталонов S_{Σ} (СКО) должны находиться в пределах, указанных в таблице 1.

Таблица 1 - Суммарные средние квадратические отклонения вторичных эталонов

Наименование эталонов	Единица величины	Диапазон хранения и передачи единицы	Суммарные СКО, %
	Активность радионуклидов 4 - 2·10 ¹¹ Бк		1,0- 2,0
Радионуклидные источники альфа-, бета- и фотонного излучений	Поток альфа-, бета-частиц и фотонов 1 - 8·10 ¹⁰ с ⁻¹		0,5 - 2,0
	Плотность потока альфа-, бета-частиц и фотонов 1·10 ⁻² - 8·10 ¹⁰ c ⁻¹ ·см ⁻²		0,5 - 2,0
	Активность радионуклидов	1·10¹ - 5·10¹² Бк	0,5-2,0
Радиометрические установки	Удельная активность радионуклидов	2 - 1·10 ⁶ Бк·г ⁻¹	0,5 - 2,0
	Поток альфа-, бета-частиц и фотонов	5 - 5·10 ⁴ c ⁻¹	0,5 - 2,0

Продолжение таблицы 1

Наименование эталонов	Единица величины	Диапазон хранения и передачи единицы	Суммарные СКО, %
	Активность радионуклидов	1·10¹ - 1·10¹² Бк	0,5 - 2,0
Радионуклидные источники	Удельная активность радионуклидов	1·10 ¹ - 1·10 ⁶ Бк·г ⁻¹	0,5 - 2,0
специального назначения	Поток альфа-, бета-частиц и фотонов	5 - 5⋅10 ¹¹ c ⁻¹	0,5 - 2,0

Доверительные границы относительной погрешности стандартных образцов, применяемых в качестве вторичных эталонов, при доверительной вероятности 0,95 должны находиться в пределах, указанных в таблице 2.

Таблица 2 - Погрешность вторичных эталонов – стандартных образцов

Наименование эталонов	Единица величины	Диапазон хранения и передачи единицы	Доверительные границы относительной погрешности, отн. ед. (P=0,95)
Стандартные образцы	Активность радионуклидов	1·10¹ - 5·10¹² Бк	1,0 - 4
активности, удельной активности радионуклидов	Удельная активность радионуклидов	1·10¹ - 1·10 ⁶ Бк·г⁻¹	1,0 - 4

- 3.3 Вторичные эталоны (рабочие эталоны 0-го разряда) применяют для передачи единиц величин рабочим эталонам.
- 3.3.1 Радионуклидные источники альфа-, бета- и фотонного излучений применяют для передачи единиц:

эталонам 1-го разряда - радионуклидным источникам методом сличения при помощи компаратора;

эталонам 1-го разряда - радиометрическим установкам методом прямых измерений.

3.3.2 Радиометрические установки применяют для передачи единиц рабочим эталонам 1-го разряда:

эталонам 1-го разряда - радиометрическим установкам методом непосредственного сличения;

радионуклидным источникам альфа-, бета- и фотонного излучений, радионуклидным источникам специального назначения, СО активности, удельной активности радионуклидов методом прямых измерений.

3.3.3 Радионуклидные источники специального назначения, СО активности, удельной активности радионуклидов применяют для передачи единиц рабочим

эталонам 1-го разряда:

радионуклидным источникам специального назначения, СО активности, удельной активности радионуклидов методом сличения при помощи компаратора; эталонам 1 разряда - радиометрическим установкам методом прямых измерений.

4 Рабочие эталоны

4.1 В качестве рабочих эталонов 1-го разряда применяют:

радионуклидные источники альфа-, бета- и фотонного излучений в диапазонах:

```
активность радионуклидов от 4 до 2\cdot10^{11} Бк; потока альфа-, бета-частиц и фотонов от 1 до 8\cdot10^{10} с<sup>-1</sup>; плотности потока альфа-, бета-частиц и фотонов от 1\cdot10^{-2} до 8\cdot10^{10} с<sup>-1</sup>·см<sup>-2</sup>;
```

радиометрические установки в диапазонах:

```
активности радионуклидов от 4 до 5 \cdot 10^{12} Бк; удельной активности радионуклидов от 2 до 1 \cdot 10^6 Бк·г<sup>-1</sup>; потока альфа-, бета-частиц и фотонов от 2 до 8 \cdot 10^{10} с<sup>-1</sup>;
```

радионуклидные источники специального назначения в диапазонах:

```
активности радионуклидов от 1 до 1·10<sup>12</sup> Бк; удельной активности радионуклидов от 1 до 1·10<sup>7</sup> Бк·г<sup>-1</sup>; потока альфа-, бета-частиц и фотонов от 5 до 5·10<sup>11</sup> с<sup>-1</sup>;
```

стандартные образцы активности, удельной активности радионуклидов в диапазонах хранения и передачи единиц:

```
активность радионуклидов от 1 до 5⋅10<sup>12</sup> Бк;
удельная активность радионуклидов от 1 до 1⋅10<sup>6</sup> Бк·г<sup>-1</sup>.
```

4.1.1 Доверительные границы относительной погрешности δ_0 рабочих эталонов 1-го разряда при доверительной вероятности 0,95 должны находиться в пределах, указанных в таблице 3.

Таблица 3 - Погрешность рабочих эталонов

таолица о погреши	ость рассчих эталоно			
Наименование эталонов	Единица величины	Диапазон хранения и передачи единицы	Доверительные границы относительной погрешности $\delta_0,\%$ (P=0,95)	
			1-го разряда	2-го разряда
	Активность радионуклидов	4 - 2-10 ¹¹ Бк	3 - 5	4 - 7
Радионуклидные источники альфа-, бета-и фотонного излучений	Поток альфа-, бета-частиц и фотонов	1 - 8·10 ¹⁰ c ⁻¹	3 - 5	4 - 7
и фотонного излучении	Плотность потока альфа-, бета-частиц и фотонов	1·10 ⁻² - 8·10 ¹⁰ с ⁻¹ ·см ⁻²	3 - 5	4 - 7
Радиометрические установки	Активность радионуклидов	4 - 5·10 ¹² Бк	1,5 - 5	-
		1 - 5·10 ¹² Бк	-	2,5 - 6
	Удельная активность радионуклидов	2 - 1·10 ⁶ Бк·г ⁻¹	1,5 - 5	-
		1 - 1⋅10 ⁶ Бк·г ⁻¹	-	2,5 - 6
	Поток альфа-, бета-частиц и фотонов	2 - 8·10 ¹⁰ c ⁻¹	1,5 - 5	2,5 - 6
Радионуклидные источники специального назначения	Активность радионуклидов	1 - 1·10 ¹² Бк	2,0 - 5	3 - 7
	Удельная активность	1 - 1·10 ⁷ Бк·г ⁻¹	2,0 - 5	-
	радионуклидов	1·10 ⁻¹ - 1·10 ⁸ Бк·г ⁻¹	-	3 - 7
	Поток альфа-, бета-частиц и фотонов	5 - 5⋅10 ¹¹ c ⁻¹	2,0 - 5	3 - 7

Доверительные границы относительной погрешности стандартных образцов, применяемых в качестве рабочих эталонов, при доверительной вероятности 0,95 должны находиться в пределах, указанных в таблице 4.

Таблица 4 - Погрешность рабочих эталонов – стандартных образцов

Наимен	нование этал	іонов Е	:диница величины	Диапазон хранения и передачи единицы -		относительно	ные границы й погрешности P=0,95)
						1-го разряда	2-го разряда
Стандартные образцы — активности, удельной активности		21111	Активность радионуклидов	1 - 5-10	¹² Бк	2,0 - 5	4 - 10
		ной	цельная активность	1 - 1·10 ⁶	Бк-г-1	2,0 - 5	-
	дионуклидов	3	радионуклидов	1·10 ⁻¹ - 1·10	0 ⁶ Бк·г ⁻¹	-	4 - 10

4.1.2 Рабочие эталоны 1-го разряда - радионуклидные источники альфа-, бета-, фотонного излучений применяют для передачи единиц величин:

рабочим эталонам 2-го разряда - радионуклидным источникам альфа-, бета-, фотонного излучений методом сличения при помощи компаратора, радиометрическим установкам -методом прямых измерений.

4.1.3 Рабочие эталоны 1-го разряда - радиометрические установки применяют для передачи единиц величин:

рабочим эталонам 2-го разряда - радиометрическим установкам методом непосредственного сличения;

рабочим эталонам 2-го разряда: радионуклидным источникам альфа-, бета-, фотонного излучений, радионуклидным источникам специального назначения, СО активности, удельной активности радионуклидов методом прямых измерений.

4.1.4 Рабочие эталоны 1-го разряда: радионуклидые источники специального назначения, СО активности, удельной активности радионуклидов применяют для передачи единиц величин:

рабочим эталонам 2-го разряда: радионуклидным источникам специального назначения, СО активности, удельной активности радионуклидов методом сличения при помощи компаратора:

рабочим эталонам 2-го разряда - радиометрическим установкам методом прямых измерений.

4.2 В качестве рабочих эталонов 2-го разряда применяют:

радионуклидные источники альфа-, бета- и фотонного излучений в диапазонах:

```
активность радионуклидов от 4 до 2\cdot10^{11}Бк; поток альфа-, бета-частиц и фотонов от 1 до 8\cdot10^{10} с<sup>-1</sup>; плотность потока альфа-, бета-частиц и фотонов от 1\cdot10^{-2} до 8\cdot10^{10} с<sup>-1</sup>·см<sup>-2</sup>;
```

радиометрические установки в диапазонах:

```
активности радионуклидов от 1 до 5\cdot 10^{12} Бк; удельной активности радионуклидов от 1 до 1\cdot 10^6 Бк·г<sup>-1</sup>; поток альфа-, бета-частиц и фотонов от 2 до 8\cdot 10^{10} с<sup>-1</sup>;
```

радионуклидные источники специального назначения в диапазонах:

```
активности радионуклидов от 1 до 1·10<sup>12</sup> Бк; удельной активности радионуклидов от 1·10<sup>-1</sup> до 1·10<sup>8</sup> Бк·г<sup>-1</sup>; поток альфа-, бета-частиц и фотонов от 5 до 5·10<sup>11</sup> с<sup>-1</sup>.
```

стандартные образцы активности, удельной активности радионуклидов в диапазонах хранения и передачи единиц:

активность радионуклидов от 1 до 5⋅10¹² Бк; удельная активность радионуклидов от 1⋅10⁻¹ до 1⋅10⁶ Бк⋅г⁻¹.

- 4.2.1 Доверительные границы относительной погрешности δ_0 рабочих эталонов 2-го разряда при доверительной вероятности 0,95 должны находиться в пределах, указанных в таблицах 3, 4.
- 4.2.2 Рабочие эталоны 2-го разряда радионуклидные источники альфа-, бета-, фотонного излучений применяют для передачи единиц величин:

средствам измерений - радионуклидным источникам альфа-, бета-, фотонного излучений методом сличения при помощи компаратора;

средствам измерений - радиометрическим установкам активности радионуклидов, удельной активности радионуклидов, объемной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов методом прямых измерений и методом косвенных измерений.

4.2.3 Рабочие эталоны 2-го разряда - радиометрические установки применяют для передачи единиц величин:

средствам измерений: радиометрическим установкам специального назначения, радиометрическим установкам активности радионуклидов, удельной активности радионуклидов, поверхностной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов методом непосредственного сличения;

средствам измерений: радионуклидным источникам альфа-, бета-, фотонного излучений, радионуклидным источникам специального назначения методом прямых измерений.

4.2.4 Рабочие эталоны 2-го разряда: радионуклидные источники специального назначения, СО активности, удельной активности радионуклидов применяют для передачи единиц величин:

средствам измерений - радионуклидным источникам специального назначения методом сличения при помощи компаратора;

средствам измерений - радиометрическим установкам активности радионуклидов, удельной активности радионуклидов, объемной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов методом прямых измерений и методом косвенных измерений;

средствам измерений - радионуклидным источникам специального назначения

методом прямых измерений.

5 Средства измерений

5.1 В качестве средств измерений применяют:

радионуклидные источники альфа-, бета- и фотонного излучений, применяемые в медицине, радиационной технологии, радиоизотопном приборостроении и других областях;

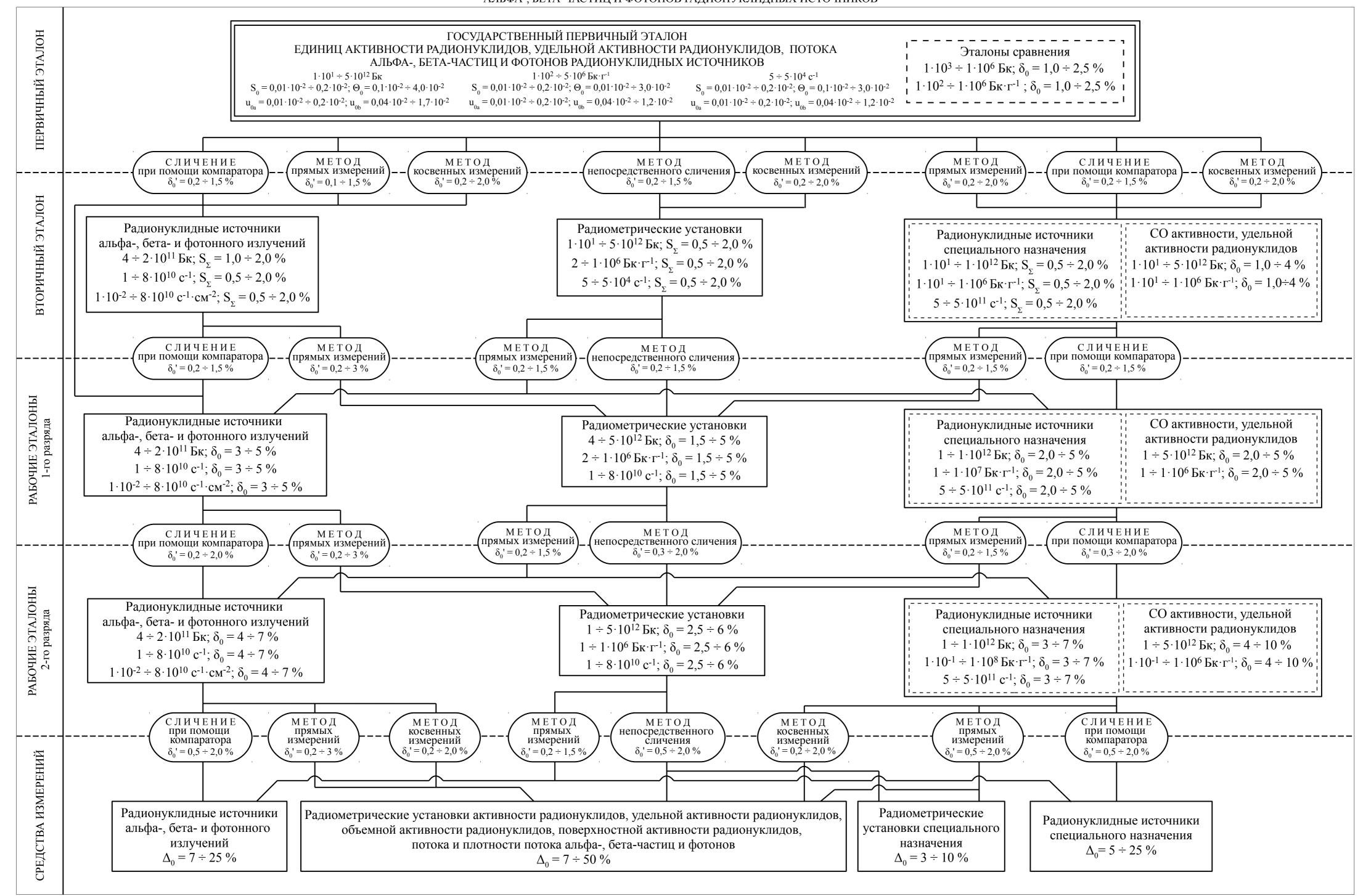
радиометрические установки для измерений активности, удельной, объемной, поверхностной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов;

радиометрические установки специального назначения, применяемые в ядерной медицине;

радионуклидные источники специального назначения.

5.2 Пределы допускаемых относительных погрешностей средств измерений Δ_0 составляют:

радионуклидные источники альфа-, бета- и фотонного излучений от 7 до 25 %;


радиометрические установки для измерений активности, удельной, объемной, поверхностной активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов от 7 до 50 %;

радиометрические установки специального назначения от 3 до 10 %;

радионуклидные источники специального назначения от 5 до 25 %.

УДК	MKC	
	: государственная поверочная сх ционуклидные источники, радиомет	
научно-исследов ионизирующих из	зработки - руководитель ательского отдела измерений влучений м. Д.И. Менделеева»	С.Г. Трофимчук
Исполнитель - на	учный сотрудник	Г.В. Жуков

