SCOPE OF ACCREDITATION

DI. Mendeleev Institute for Metrology (VNIIM)

name of a legal entity or surname, name and patronymic (if any) of an individual entrepreneur

RA.RU. 3 11541

unique accreditation record number in the register of accredited persons 19, Moskovsky Ave., 190005 St. Petersburg 2, Fedyuninsky Str., Lomonosov 2198412, St. Petersburg 19 Chaynoye Ozero Str., Toksovo, 188664 Vsevolozhsk, St. Petersburg Sosnovka Park, Vyborgsky District, 194354 St. Petersburg 29/5 B Kozhevennaya Line, Vasilyevsky Island, 199106 St. Petersburg 2, Upper Podstepnovka, Volzhsky district, 443004 Samara region 167, Volchanskaya Str., 308009 Belgorod 3–7 Zh, 24th Line, Vasilyevsky Island, 199106 St. Petersburg

addresses of business locations

Calibration of measuring instruments

IM

calibration stamp code

No.	Measurements, type (group)	Metrological	Neter			
n/n	of measuring instruments	measurement range	uncertainty (error, class)	INOTES		
1	2	3	4	5		
	19,	Moskovsky Ave., St. P	etersburg 190005			
	GEOMETRIC MEASUREMENTS					
1	Length measuring instruments					
1.1	Spectral lamps	(0.2 – 50) μm	$U_{0.95} = 5 \cdot 10^{-6} \mathrm{nm}$	SK 03–251–44/20–T		
1.2	Laser wavelength meters	$\lambda = (0.4 - 11) \ \mu m$	$U^{\circ}_{0.95} = 10^{-10}$	Method of direct measurements using frequency–stabilized lasers		
1.3	Frequency stabilized, tunable and continuous gas lasers	$\lambda = (0.4 - 11) \ \mu m$	$U_{0.95} = 0.02 \text{ fm}$	SK 03–251–02/20–T Method of direct measurements using GET 2		
1.4	Laser displacement meters	$(10^{-9} - 10^{-2})$ m	$U_{0.95} = (0.2 - 20) \text{ nm}$	Comparisons with GET 2		
1.5	Benches for verification of line gauges	(0.001 – 1000) mm	$U_{0.95} = (0.02 - 0.10) \ \mu \text{m}$	SK 03–251–12/20–C Comparisons using transfer standards		
1.6	Line gauges	(0.001 – 2000) mm	$U_{0.95} = Q^{11} [0.02; 0.30L]$ µm, where L – length, m	SK 03–251–03/14–T Method of direct measurements using GET 2		
1.7	Object-micrometers	(0 – 1) mm	$U_{0.95} = Q^{11} [19.2; 0.102L]$ nm, where <i>L</i> – length, mm	SK 03–251–03/14–T Method of direct measurements using GET 2		

1	2	3	4	5
1.8	Measuring tapes and roulettes	(0.001 – 100) m	$U_{0.95} = Q^{1}[16.8; 7.6L] \ \mu m,$ where L – length, m	SK 03–251–13/19–T Direct interference measurements
1.9	Step height gauges block type A1 according to ISO 5436–1	(1 – 3000) nm	$U_{0.95} = Q^{10}[1,6; 0.007 L]$ nm, where <i>L</i> is the length, nm	SK 03–251–06/15–T
1.10	Geodesic wands	to 4 m	$U_{0.95} = Q^{10}[0.02; 0.30L]$ μm , where L – length, m	SK 03–251–03/14–T Direct interference measurements
1.11	Benches for verification of end gauges	(0.1 – 1000) mm	$U_{0.95} = (0.01 - 0.06) \mu\text{m}$	SK 03–251–13/20–C Comparisons using transfer standards
1.12	Plane–parallel end gauges	(100 – 1000) mm	$U_{0.95} = Q^{10}[30; 0.20L]$ nm, where <i>L</i> – length, mm	SK 03–251–07/15–T
1.13	Plane–parallel end gauges	(0.1 – 100) mm	$U_{0.95} = Q^{-1}[30; 0.15L]$ nm, where L – length, mm	SK 03–251–08/14–T
1.14	Benches for verification of measuring tapes, measuring tapes	(0.001 – 50) m	$U_{0.95} = (0.5 - 25) \mu\text{m}$	Direct interference measurements, comparisons using transfer standards
1.15	Measuring rulers	(0 – 3000) mm	$U_{0.95} = (0.03 - 0.23) \text{ mm}$	SK 03-251-25/19-T
1.16	Digital rulers	(0 – 3000) mm	$U_{0.95} = (0.006 - 0.15) \text{ mm}$	SK 03-251-26/19-T
1.17	Installations for verification of level gauges	(0 – 50) m	$U_{0.95} = (0.05 - 12) \text{ mm}$	Direct comparisons with laser measuring system
1.18	Laser level meters (ultrasonic, radio wave, electronic, microwave, radar, capacitive, waveguide, float)	(0 – 30) m	$U_{0.95} = (0.1 - 2) \text{ mm}$	Direct comparisons with measuring tape
1.19	Measuring heads and indicators (lever–gear, digital, multi–turn, clock type, microcators, micators, opticators, minicators)	(0 – 150) mm	$U_{0.95} = (0.01 - 3) \mu\text{m}$	MK 41–233–2016 Method of direct measurements using plane–parallel end gauges
1.20	Instruments for verification of measuring heads, indicators and indicating calipers	(0 – 100) mm	$U_{0.95} = (0.01 - 2.5) \mu\text{m}$	SK 03–251–45/20–T Method of direct measurements using plane–parallel length gauges
1.21	Instruments for verification of extensometers	(0 – 100) mm	$U_{0.95} = (0.1 - 20) \mu\text{m}$	SK 03–251–19/19–T Direct comparisons with laser measuring system
1.22	Thickness gauges and indicator wall meters	(0 – 200) mm	$U_{0.95} = (1 - 70) \mu \mathrm{m}$	SK 03–251–24/19–T Method of direct measurements using plane –parallel end gauges

1	2	3	4	5
1.23	Instruments measuring relative position of surfaces	± 40 mm	$U_{0.95} = (0.005 - 1) \text{ mm in}$ the measuring range from 0 to 40 mm, $U_{0.95} = (1 - 0.005) \text{ mm in}$ the measuring range from minus 40 to 0 mm	SK 03–251–21/19–T
1.24	Micrometers	(0 – 3000) mm	$U_{0.95} = (0.5 - 20) \mu\text{m}$	SK 03–251–24/19–T Method of direct measurements using plane parallel end gauges
1.25	Caliper tool	(0 – 4000) mm	$U_{0.95} = (0.003 - 0.15) \text{ mm}$	SK 03–251–18/19–T Method of direct measurements using plane parallel end gauges
1.26	Micrometric and indicator depth gauges	(0 – 300) mm	$U_{0.95} = (1 - 8) \mu\text{m}$	SK 03–251–18/19–T Method of direct measurements using plane parallel end gauges
1.27	Staples	(0 – 2000) mm	$U_{0.95} = (0.3 - 12) \mu\text{m}$	SK 03–251–24/19–T Method of direct measurements using plane parallel end gauges
1.28	Horizontal and vertical length gauges (altimeters)	(0 – 1000) mm (1000 – 5000) mm	$U_{0.95} =$ = $Q^{1}[0.020; 0.34 \cdot 10^{-3}L] \ \mu m$ $U_{0.95} =$ = $Q^{1}[0.007; 0.65 \cdot 10^{-3}L] \ \mu m$, where L – length, mm	SK 03–251–45/20–T Method of direct measurements using plane parallel end gauges Direct comparisons with the laser measuring system
1.29	Coordinate measuring machines	X - 15000 mm Y - 5000 mm Z - 5000 mm	$U_{0.95} =$ = $Q^{10}[0.56; 2.31 \cdot 10^{-3} L] \mu m$, where L – length, mm	SK 03–251–32/19–T Method of direct measurements using plane parallel end gauges Direct comparisons with laser measuring system
1.30	Probes	(0.02 – 2) mm	$U_{0.95} = 0.7 \ \mu m$	Method of direct measurements using measuring head
1.31	Radius templates	<i>R</i> (1 – 70) mm	U _{0.95} = 10 μm	Method of direct measurements using two-coordinate measuring instrument
1.32	Laboratory sieves	(0.02 – 125) mm	$U_{0.95} = 1 \ \mu m$	Method of direct measurements using two–coordinate measuring instrument

1	2	3	4	5
1.33	Screw ocular micrometers	15x (0 – 8) mm	$U_{0.95} = 5 \ \mu m$	Method of direct measurements using two–coordinate measuring instrument
1.34	Threaded templates	(0.4 – 6.0) mm 28 – 4 threads per 1"	U _{0.95} = 5 μm	Method of direct measurements using two–coordinate measuring instrument
1.35	Calibration squares	(60 – 1600) mm	$U_{0.95} = (1 - 36) \mu\text{m}$	Method of direct measurements using measuring head
1.36	Special and universal templates	(0 – 220) mm	<i>U</i> _{0.95} = 10 μm	Method of direct measurements using two-coordinate measuring instruments
1.37	Calipers, templates, stands and railway devices (track measuring)	(0 – 3000) mm	$U_{0.95} = (0.0005 - 0.5) \text{ mm}$	M OKT/DCM3.10.002 Method of direct measurements using end gauges
1.38	Measuring rods (road, water meter, etc.)	(0 – 8000) mm	$U_{0.95} = (0.0005 - 0.5) \text{ mm}$	Direct comparisons with measuring tape
1.39	Linear displacement transducers, extensometers	(0 – 7000) mm	$U_{0.95} = (0.02 - 6) \mu\text{m}$	SK 03–251–33/19–T Method of direct measurements using plane parallel end gauges Direct comparisons with laser measuring system
1.40	Coordinate measuring instruments, incl. projecting and measuring microscopes	(0 – 200) mm (200 – 1000) mm	$U_{0.95} =$ $= Q^{10}[0.6; 1 \cdot 10^{-3}L] \ \mu m$ $U_{0.95} =$ $= Q^{10}[0.5; 2.5 \cdot 10^{-3}L] \ \mu m,$ where <i>L</i> - length, mm	SK 03–251–41/20–T Method of direct measurements using plane–parallel end gauges and line gauges
1.41	Calibration rulers	(50 – 500) mm	$U_{0.95} = (0.2 - 1) \mu\text{m}$	Method of direct measurements using measuring head
1.42	Control bars	(150 – 500) mm	$U_{0.95} = (0.1 - 0.5) \mu\text{m}$	Direct comparisons with flat glass plate
1.43	Systems and complexes for nuclear and gas industry	(0.0001 – 100) m	$U_{0.95} = (0.03 - 100) \text{ mm}$	ITCYA.463439.118D2 Method of direct measurements using end plane–parallel length measures, measuring tapes, measuring rings
1.44	Laser measuring systems, coordinate measuring systems (including trackers and scanners)	(0 – 200) m	$U_{0.95} =$ = $Q^{10}[0.003; 0.07L] \mu\text{m}$, where L – length, m	SK 03–251–33/19–T Direct comparisons with GET 2, tacheometer
1.45	Optical and digital levels	(0.1 – 5000) m	$U_{0.95} = 0.1 \text{ mm}$	Direct comparisons with tacheometer

1	2	3	4	5
1.46	Laser levels, including laser plane builders	(0 – 700) m	$U_{0.95} = 0.05 \text{ mm}$	Direct comparisons with tacheometer
1.47	Leveling Measuring rods	(0 – 8000) mm	$U_{0.95} = (0.05 - 0.5) \text{ mm}$	Direct comparisons with measuring tape
1.48	Gauging rods	(0 – 8000) mm	$U_{0.95} = (0.1 - 1.5) \text{ mm}$	Direct comparisons with measuring tape
1.49	Measuring waymarks	(0 – 12) m	$U_{0.95} = (1 - 3) \text{ mm}$	Direct comparisons with measuring tape
1.50	Material length gauges	(0.1 – 99999.9) m	$U_{0.95} = (0,05 + 0,004 L)$ m, where L – length, m	Method of direct measurements using measuring tape
1.51	Tacheometers	to 10000 m	$U_{0.95} = Q^{10}[0.3; (0.2 + 0.6 \cdot 10^{-6} L)] \text{ mm}$ where L - length, mm	SK 03–251–40/20–T
1.52	Distance meters	(0 – 30) m (30 – 3500) m	$U_{0.95} = 0.1 \text{ mm}$ $U_{0.95} = Q^{10} [0.3; (0.2 + 0.6 \cdot 10^{-6} L)] \text{ mm},$ where L – length, mm	SK 03–251–40/20–T
1.53	Geodesic bases	to 3500 m	$U_{0.95} = Q^{10}[0.9; (0.2 + 0.6 \cdot 10^{-6} L)] \text{ mm},$ where L – length, mm	Method of direct measurements with tacheometer
1.54	Internal diameter gauges (rings)	(0.5 – 200) mm (200 – 500) mm	$U_{0.95} = Q^{1}[0.05; 0.59 \cdot 10^{-3} L] \ \mu\text{m},$ $U_{0.95} = Q^{1}[0.05; 0.77 \cdot 10^{-3} L] \ \mu\text{m},$ where L – length, mm	SK 03–251–05/14–T Method of direct measurements using horizontal length gauge
1.55	Cylindrical gauges external dimensions – smooth gauges (plugs), wires and rollers	(0.5 – 500) mm	$U_{0.95} =$ = Q^1) [0.06; 0.7·10 ⁻³ L] µm, where L – length, mm	SK 03–251–04/14–T Direct measurement method using horizontal length gauge
1.56	Nutromery	(0.3 – 4000) mm	$U_{0.95} =$ = $Q^{10}[0.6; 5.6 \cdot 10^{-3}L] \mu m$, where L – length, mm	SK 03–251–36/19–T SK 03–251–29/19–T Method of direct measurements using measuring rings, horizontal length gauge , plane– parallel end gauges
1.57	Threaded gauges: – metric, – pipe cylindrical, – pipe conical, – locking	$(1 - 350) \text{ mm} (1/8 - 20)'' (1/8 - 3^{1}/_{2})'' (3^{1}/_{2} - 20)'' Z 65 - Z 203$	$U_{0.95} = 0.5 \ \mu m$ $U_{0.95} = 0.5 \ \mu m$ $U_{0.95} = 1.2 \ \mu m$ $U_{0.95} = 1.6 \ \mu m$ $U_{0.95} = 1.6 \ \mu m$	SK 03–251–09/14–T Method of direct measurements using horizontal length gauge, two –coordinate measuring instrument
1.58	Instruments measuring hole diameters	(1 – 300) mm	$U_{0.95} = Q^{10} [0.08; 0.25 \cdot 10^{-3} L] \mu\text{m}$ where L – length, mm	SK 03–251–12/20–C Method of direct measurements using measuring rings, line gauges

1	2	3	4	5
1.59	Systems measuring smooth and threaded gauges and parts of complex shape, instrument for measuring thread parameters	(0 –350) mm	$U_{0.95} = (0.5 - 3) \mu\text{m}$	Method of direct measurements using measuring rings, plane-parallel end gauges, thread gauges
1.60	Coating thickness gauges	(0 – 20) mm	$U_{0.95} = 0.08 \ \mu m$	SK 03–251–14/15 Method of direct measurements using horizontal length gauge
1.61	Thickness gauges	(0.01 – 500) mm	$U_{0.95} = Q^{10} [0.09; 0.7 \cdot 10^{-3} L]$ μm where <i>L</i> – length, mm	SK 03–251–14/15 Method of direct measurements using horizontal length gauge
1.62	Thickness gauges (ultrasonic, eddy current , magnetic)	(0 – 500) mm	$U_{0.95} = (0.0003 - 5) \text{ mm}$	ISO 2178:2016 ISO 2360:2017 Method of direct measurements using thickness gauges
1.63	Sensitivity standards	(0.1 – 5) mm	$U_{0.95} = (5 - 100) \mu\text{m}$	Method of direct measurements using two-coordinate measuring instrument
1.64	Gauges (references) for non–destructive testing	(0.1 - 100) mm (100 - 300) mm (300 - 1000) mm $R_a (0.01 - 150) \mu \text{m}$ $R_z R_{max} (0.01 - 320) \mu \text{m}$	$U_{0.95} = 5 \ \mu m$ $U_{0.95} = 0.04 \ mm$ $U_{0.95} = 0.2 \ mm$ $U^{\circ}_{0.95} = (6-1)\%$	SK 03–251–28/19–T Method of direct measurements using measuring microscope, caliper, measuring ruler, instruments measuring roughness
1.65	Short length standards (targets, photomasks, samples for microscope calibration, etc.)	(0.7 – 1000) μm	$U_{0.95} =$ = Q^{10} [19.2; 0.102 L] nm, where L – length, mm	SK 03–251–03/14–T Method of direct measurements using GET 2
1.66	Flaw detectors (ultrasonic, eddy current, magnetic)	Minimum defect size: 0.1 mm Defect depth: (10 – 100) % of wall thickness	$U_{0.95}^{\circ} = 1 \%$ $U_{0.95}^{\circ} = (0,05-7) \%$	Method of direct measurements using measures for flaw detection
1.67	Radiographic and X–ray television complexes	(0.01 – 1000) mm	$U_{0.95} = (0.1 - 0.7) \mu\text{m}$	Method of direct measurements using plane parallel end gauges
1.68	Systems, complexes, installations, devices and modules measuring length	(0 – 100) m	$U_{0.95} = (0, 2 \cdot 0^{-9} - 5 \cdot 10^{-6}) \text{ m}$	Direct comparisons with GET 2. Method of direct measurements using plane–parallel end gauges, measuring tapes

1	2	3	4	5
2	Instruments measuring an	ngles		
2.1	Interference examiners	(0-6)'	$U_{0.95} = 0.02$ "	Direct comparisons with GET 22
2.2	Angle setting installations, systems and devices measuring angle	(0-360)°	U _{0.95} = 0.03"	SK 03–251–12/15–T Direct comparisons with GET 22
2.3	Multifaceted prisms	(0-360)°	$U_{0.95} = 0.05$ "	SK 03–251–11/15–T
2.4	Angular measures	(0-360)°	$U_{0.95} = 0.2$ "	Method of direct measurements using GET 22
2.5	Autocollimators	±15" ±600" ±1000" ±300'	$U_{0.95} = 0.01"$ $U_{0.95} = 0.02"$ $U_{0.95} = 0.05"$ $U_{0.95} = 0.2"$	SK 03–251–10/15–T Direct comparisons with GET 22
2.6	Angular displacement transducers (encoders)	(0 – 360)°	$U_{0.95} = 0.1$ "	Direct comparisons with GET 22
2.7	Dividing angular measuring instruments, optical dividing heads	(0 – 360)°	<i>U</i> _{0.95} = 0.5"	Direct comparisons with multifaceted prism and autocollimator
2.8	Theodolites	$(0 - 360)^{\circ}$	$U_{0.95} = 0.3$ "	SK 03–251–40/20–T
2.9	Goniometers	(0 – 360)°	$U_{0.95} = 0.05$ "	Direct comparisons with GET 22
2.10	Examiners	(0 – 360)'	U _{0.95} = 0.08"	Method of direct measurements using plane parallel end gauges
2.11	Optical quadrants	(0 – 360)°	U _{0.95} = 2.5"	Direct comparisons with multifaceted prism and autocollimator
2.12	Level meters:	± 30"	$U_{0.95} = 0.2$ "	SK 03–251–20/19–T Direct comparisons
	 with micrometric supply of ampoule; 	\pm 30 mm/m	$U_{0.95} = 0.01 \text{ mm/m}$	with the examiner, optical dividing head
	 frame and bar; electronic 	250 mm $\pm 5 \text{ mm/m}$ $\pm 45^{\circ}$ $\pm 90^{\circ}$	$U_{0.95} = 0.002 \text{ mm/m}$ $U_{0.95} = 0.001 \text{ mm/m}$ $U_{0.95} = 5"$ $U_{0.95} = 0.1^{\circ}$	
2.13	Goniometers	(0 – 360)°	$U_{0.95} = 1'$	Method of direct measurements using angle gauges
2.14	Special and universal templates	(0 – 160)°	U _{0.95} = 1'	Method of direct measurements using two–coordinate measuring instrument
2.15	Calipers, templates, stands and railway devices (track measuring)	(0 – 360)°	$U_{0.95} = 1'$	Method of direct measurements using two–coordinate measuring instrument

1	2	3	4	5
2.16	Measuring rods (road, water meter, etc.)	(0 – 360)°	$U_{0.95} = 1'$	Direct measurement method using quadrant
2.17	Coordinate measuring instruments, incl. projection	(0 – 360)°	U _{0.95} = 10"	SK 03–251–41/20–T Method of direct measurements using angle gouges
2.18	Sinus rulers	(100 – 500) mm	$U_{0.95} = 2$ "	Direct comparisons with angles gauges and autocollimator
2.19	Systems and complexes for nuclear and gas industry	(0 – 360)°	<i>U</i> _{0.95} = 20"	ITCYA.463439.118D2 Direct comparisons with quadrant, theodolite
2.20	Coordinate measuring systems (including trackers and scanners)	(0 – 360)°	<i>U</i> _{0.95} = 0.3"	Direct comparisons with GET 22
2.21	Tacheometers	(0-360)°	$U_{0.95} = 0.3$ "	SK 03–251–40/20–T
2.22	Laser measuring systems	± 10°	$U_{0.95} = 0.2$ "	SK 03–251–34/19–T
2.23	Distance meters	(0 – 360)°	$U_{0.95} = 0.1^{\circ}$	SK 03–251–20/19–T Direct comparisons with dividing optical head
2.24	Measures (references) for flaw detection	(0 – 360)°	$U_{0.95} = 1'$	Method of direct measurements using two–coordinate measuring instrument
2.25	Tilt sensors	(0 – 360)°	$U_{0.95} = 0.1^{\circ}$	Direct comparisons with dividing optical head
2.26	Systems, complexes, installations, instruments and modules measuring angles	(0 – 360)°	$U_{0.95} = 0.1$ "	Direct comparisons with GET 22
3	Instruments measuring re	oughness parameters		
3.1	Roughness measures	$R_a (0.01 - 150) \ \mu m$ $R_z R_{max} (0.01 250) \ \mu m$	$U^{0}_{0.95} = (6-1)\%$	Method of direct measurements with roughness measuring instrument
3.2	Surface roughness samples (comparisons)	$R_a (0.01 - 150) \ \mu m$ $R_z R_{max} (0.01 320) \ \mu m$	$U^{\circ}_{0.95} = (20 - 3) \%$	Method of direct measurements with a roughness measuring instrument
3.3	Instruments measuring roughness parameters	$R_a (0.001 - 400) \mu\text{m}$ $R_z R_{max} (0.0013000) \mu\text{m}$	$U^{0}_{0.95} = (10 - 1) \%$	GOST R 8.651–2009 Method of direct measurements using roughness standards

1	2	3	4	5			
MEC	IECHANICAL MEASUREMENTS						
4	Mass measuring instrum	nents					
4.1	Secondary standards – copies of mass unit standard	1 kg	$U_{0.95} = 2.4 \cdot 10^{-2} \text{ mg}$	Comparison with GET 3 using vacuum comparator			
4.2	Secondary (working) standards of mass unit standard	$\begin{array}{c} 1 \text{ mg; } 2 \text{ mg; } 5 \text{ mg; } 10 \text{ mg} \\ 20 \text{ mg; } 50 \text{ mg; } 100 \text{ mg} \\ 200 \text{ mg} \\ 500 \text{ mg; } 1 \text{ g; } 2 \text{ g} \\ 5 \text{ g} \\ 10 \text{ g} \\ 20 \text{ g} \\ 50 \text{ g; } 100 \text{ g} \\ 200 \text{ g} \\ 500 \text{ g} \\ 1 \text{ kg} \\ 2 \text{ kg} \\ 5 \text{ kg} \\ 10 \text{ kg} \\ 20 \text{ kg} \\ \end{array}$	$U_{0.95} = 6 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 6 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 9 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 1.6 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 2.6 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 2.6 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 8.4 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 1.3 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 1.8 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 9.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 3 \text{ mg}$	Method of cumulative measurements using comparator			
4.3	Measures of mass (weights)	$\begin{array}{c} 1 \text{ mg; } 2 \text{ mg; } 5 \text{ mg; } 10 \text{ mg} \\ 20 \text{ mg; } 50 \text{ mg; } 100 \text{ mg} \\ 200 \text{ mg} \\ 500 \text{ mg; } 1 \text{ g; } 2 \text{ g} \\ 5 \text{ g} \\ 10 \text{ g} \\ 20 \text{ g} \\ 500 \text{ g; } 100 \text{ g} \\ 200 \text{ g} \\ 500 \text{ g} \\ 1 \text{ kg} \\ 2 \text{ kg} \\ 5 \text{ kg} \\ 10 \text{ kg} \\ 20 \text{ kg} \\ \end{array}$	$U_{0.95} = 6 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 6 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 9 \cdot 10^{-4} \text{ mg}$ $U_{0.95} = 1.6 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 1.9 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 2.6 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 4.4 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 8.4 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 1.3 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 5.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 9.0 \cdot 10^{-1} \text{ mg}$ $U_{0.95} = 3 \text{ mg}$	Comparison with a comparator			

1	2	3	4	5
4.4	Measures of mass (loads)	1 mg; 2 mg; 5 mg 10 mg 20 mg 50 mg 100 mg 200 mg 500 mg 1 g 2 g 5 g 10 g 20 g 50 g 100 g 200 g 500 g 1 kg 2 kg 5 kg 10 kg 20 kg	$\begin{array}{c} U_{0.95}=\!\!3\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!2.7\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!3.3\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!3.3\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!5.3\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!6.7\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!8.3\cdot 10^{-3} \ \mathrm{mg} \\ U_{0.95}=\!\!1.\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!1.3\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!2.0\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!2.7\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!3.3\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!5.3\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!2.7\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!5.3\cdot 10^{-2} \ \mathrm{mg} \\ U_{0.95}=\!\!1.0\cdot 10^{-1} \ \mathrm{mg} \\ U_{0.95}=\!\!5.3\cdot 10^{-1} \ \mathrm{mg} \\ U_{0.95}=\!\!2.7 \ \mathrm{mg} \\ U_{0.95}=\!\!2.7 \ \mathrm{mg} \\ U_{0.95}=\!\!1.0 \ \mathrm{mg} \\ U_{0.95}=\!\!1.0$	Comparison with a set of standard weights us- ing comparator. Nominal masses of loads are given. The conditional mass of goods may differ from the nominal. Intermediate values are calculated according to MK.
4.5	Mass standards (baskets)	10 kg 20 kg 40 kg 60 kg	$U_{0.95} = 5.3 \text{ mg}$ $U_{0.95} = 10 \text{ mg}$ $U_{0.95} = 20 \text{ mg}$ $U_{0.95} = 100 \text{ mg}$	Comparison with a set of standard weights us- ing comparator. Intermediate values are calculated according to MK
4.6	Mass standards (weights)	200 kg 500 kg 1 t	$U_{0.95} = 0.3 \text{ g}$ $U_{0.95} = 0.8 \text{ g}$ $U_{0.95} = 1.6 \text{ g}$	Comparison with a set of standard weights us- ing comparator. Intermediate values are calculated according to MK
4.7	Non–automatic scales	$\begin{array}{c} {\rm from}\;1\cdot10^{-5}\;{\rm to}\;6\;g\\ {\rm from}\;1\cdot10^{-4}\;{\rm to}\;50\;g\\ {\rm from}\;1\cdot10^{-3}\;{\rm to}\;200\;g\\ {\rm from}\;1\cdot10^{-2}\;{\rm to}\;500\;g\\ {\rm from}\;1\cdot10^{-4}\;{\rm to}\;5\;kg\\ {\rm from}\;1\cdot10^{-3}\;{\rm to}\;15\;kg\\ {\rm from}\;5\cdot10^{-3}\;{\rm to}\;70\;kg\\ {\rm from}\;5\cdot10^{-2}\;{\rm to}\;100\;kg\\ {\rm from}\;5\cdot10^{-1}\;{\rm to}\;200\;kg\\ {\rm from}\;5\cdot10^{-1}\;{\rm to}\;200\;kg\\ {\rm from}\;5\cdot0\;0\;kg\\ {\rm from}\;5\;0\;to\;1000\;kg\\ {\rm from}\;2\cdot10^{-3}\;{\rm to}\;2\cdot10\;{}^{5}\;kg\\ {\rm from}\;2\cdot10^{-2}\;{\rm to}\;2\cdot10\;{}^{5}\;kg\\ {\rm from}\;2\cdot10\;{}^{5}\;kg\\ {\rm fr$	$U_{0.95} = 3.5 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 8.7 \cdot 10^{-3} \text{ mg}$ $U_{0.95} = 2.5 \cdot 10^{-2} \text{ mg}$ $U_{0.95} = 2.2 \text{ mg}$ $U_{0.95} = 2.2 \text{ mg}$ $U_{0.95} = 220 \text{ mg}$ $U_{0.95} = 220 \text{ mg}$ $U_{0.95} = 22 \text{ g}$ $U_{0.95} = 4.3 \text{ g}$ $U_{0.95} = 10.8 \text{ g}$ $U_{0.95} = 21.6 \text{ g}$ $U_{0.95} = 0.03 \%$ $U_{0.95} = 0.03 \%$	Method of direct measurements. $U_{0.95}$ is given for the maximum load of the range at the lowest possible d for the "ideal tool", where d is the actual division value. Intermediate values are calculated according to MK. Calibration over 1000 kg is carried out only for "crane" scales.
4.8	Mass comparators	to 1 g to 10 g to 100 g to 1kg to 10 kg to 20 kg	$\begin{array}{r} 3.1 \cdot 10^{-4} \text{ mg} \\ 3.1 \cdot 10^{-3} \text{ mg} \\ 3.1 \cdot 10^{-1} \text{ mg} \\ 1.6 \text{ mg} \end{array}$	Method of multiple measurements. Intermediate values are calculated according to MK

1	2	3	4	5
		to 20 kg	3.1 mg	
		to 50 kg	16 mg	
		to 500 kg	160 mg	
		to 1000 kg	310 mg	
4.9	Liter grain testers of the	(720 – 820) g	$U_{0.95} = 0.7 \text{ g}$	SK 03–2301–6–MK –
	1st and 2nd class according to GOST 16464			13–2020–T
4.10	Thermogravimetric	to 250 g	$U_{0.95} = 5.0 \text{ mg}$	Method of direct
	moisture meters	to 100 %	$U_{0.95} = 0.01$ %	measurements.
				calculated according to
				MK.
5	Force measuring instrum	ents		
5.1	Dynamometers and force-	$(10 - 10^6)$ N	$U^{0}_{0.95} = 0.01 \%$	Direct measurement
	measuring sensors	$(10^6 - 2 \cdot 10^6)$ H	$U^{0}_{0.95} = 0.06 \%$	method
		$(2\ 10^6 - 5 \cdot 10^6)$ H	$U^{0}_{0.95} = 0.12$ %	
5.2	Load cells	$(1-5 \cdot 10^5)$ kg	$U^{\rm o}_{0.95} = 0.01 \ \%$	Direct measurement method
53	Power generating	$(10 - 10^6)$ N	$U_{0.95}^{0} = 0.01 \%$	Comparison method
5.5	machines	$(10^6 - 3 \cdot 10^6)$ H	$U^{\circ}_{0.95} = 0.02 \%$	with GET 32
		$(3\ 10^6 - 9 \cdot 10^6)$ N	$U^{0}_{0.95} = 0.04 \%$	
5.4	Test machines	$(10 - 10^6)$ N	$U^{ m o}_{0.95}=0.2$ %	Direct measurement
		$(10^6 - 5 \cdot 10^6) \text{ H}$	$U^{\rm o}_{0.95} = 0.4$ %	method
MEAS	SUREMENTS OF FLOW,	FLOW RATE, LEVEL, V	OLUME OF SUBSTAN	CES
6	Instruments measuring ga	as volume flow		
6.1	Sampling devices, dust	from 0.002 to	$U_{0.95} = 0.1 \%$ (rel.)	Method of indirect
	collection devices, gas	$400 \text{ dm}^3/\text{min}$		measurements
	flow meters and regulators			
6.2	Sampling devices dust	from 0.002 to	$U_{0.05} = 0.2\%$ (rel.)	Direct comparison
0.2	collection devices, gas	$50 \text{ dm}^3/\text{min}$	0.95 - 0.2 /0 (101.)	Direct comparison
	flow meters and regulators			
7	Instruments measuring ve	olume of gas		
7.1	Sampling devices, dust	from 0.1 to 60000 dm ³	$U_{0.95} = 0.1$ % (rel.)	Direct comparison
	collection devices, gas			
0	flow meters and regulators			
8	Instruments measuring ve	olume, capacity		
8.1	Dispensers, pipettes,	from 0.1 to 0.5 ultimate	$U^{0}_{0.95} = 6 \%$	Gravimetric method
	glass, plastic capacity	from 0.5 to	$L^{70} = -1.0/$	
	gauges	1.0 µl incl.	U 0.95 - 1 %	
		from 1.0 to	$U_{0.05}^{0} = 0.3\%$	-
		$10 \ \mu l \text{ incl.}$		
		from 10	$U^{0}_{0.95} = 0.2 \%$	1
		to 100 µl incl.		
		from 0.1	$U^{0}_{0.95} = 0.1$ %	
		to 50 ml incl.		4
		from 0.05 to 101 incl.	$U^{0}_{0.95} = 0.01 \%$	

1	2	3	4	5
PWSS	SUWS MEASUREMENTS	S, VACUUM MEASUREN	MENTS	
9	Instruments measuring o	verpressure		
9.1	Piston pressure gauges	from minus 0.1 to 1 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	Direct comparison with GET 23, Standard–copy
		from 1 to 3 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 3 to 100 MPa	$U^{\circ}_{0.95}=1.80 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 100 to 250 MPa	$U^{\circ}_{0.95} = 1.81 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
9.2	Pressure calibrators (generators, controllers); converters, pressure	from minus 0.1 to 1 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	Direct comparison with GET 23, Standard–copy,
	sensors; digital pressure gauges	from 1 to 3 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	working standard
		from 3 to 10 MPa	$U^{\circ}_{0.95} = 1.80 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 10 to 100 MPa	$U^{\circ}_{0.95} = 1.81 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 100 to 250 MPa	$U^{\circ}_{0.95} = 1.86 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
9.3	Deformation manometers	from minus 0.1 to 0 MPa	$U^{\circ}_{0.95} =$ $= 2 \cdot Q^{1}[8.9 \cdot 10^{-6} \cdot p;$ $1.2 \cdot 10^{-1} \cdot c], \text{ where } p \text{ is the measured pressure, Pa;}$ <i>s</i> is the division value of pressure gauge scale, Pa	Direct Comparison with Standard–copy, working standard
		from 0 to 60 MPa from 60 to 250 MPa	$U^{\circ}_{0.95} =$ $= 2 \cdot Q^{1}[8.9 \cdot 10^{-6} \cdot p;$ $1.2 \cdot 10^{-1} \cdot c],$ where <i>p</i> is the measured pressure, Pa; <i>s</i> is the division value of pressure gauge scale, Pa $U^{\circ}_{0.95} =$ $= 2 \cdot Q^{1}[9.3 \cdot 10^{-6} \cdot p;$	
			$1.2 \cdot 10^{-1} \cdot c$], where p – measured pressure, Pa; s is the price of division of the pressure gauge scale, Pa	

1	2	3	4	5
9.4	Pressure measuring instruments, measuring channels and others	from minus 0.1 to 1 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	Direct comparison direct comparison with GET 23, copy
		from 1 to 3 MPa	$U^{\circ}_{0.95} = 1.77 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	standard, working standard
		from 3 to 10 MPa	$U^{\circ}_{0.95} = 1.80 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 10 to 100 MPa	$U^{\circ}_{0.95} = 1.81 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
		from 100 to 250 MPa	$U^{\circ}_{0.95} = 1.86 \cdot 10^{-5} \cdot p$, where <i>p</i> is the measured pressure, Pa	
9.5	Measuring pressure	from minus 0.1 to 0 MPa	$U_{0.95} = 2 \cdot Q^{10} [8.9 \cdot 10^{-6} \cdot p; X]$	Direct comparison
	transducers, pressure	from 0 to 60 MPa	$U_{0.95} = 2 \cdot Q^{1} [9.2 \cdot 10^{-6} \cdot p; X]$	with copy standard,
	5015015	from 60 to 250 MPa	$U_{0.95} = 2 \cdot Q^{1}[9.3 \cdot 10^{-6} \cdot p; X]$ where <i>p</i> is the measured	working standard
			X – calculated value for	
			the range of the output	
			signal	
		limits of outstanding change of output signals from 0 to 0.1 V from 0 to 1 V from 0 to 10 V	$X = 6.93 \cdot 10^{-7} \cdot p/(U_H - U_L)$ $X = 3.0 \cdot 10^{-6} \cdot p/(U_H - U_L)$ $X = 2.19 \cdot 10^{-5} \cdot p/(U_H - U_L)$ $U_L, U_H - \text{lower and upper limit values of the output signal, V}$	
		from 0 to 10 mA from 0 to 20 mA	$X = 1.73 \cdot 10^{-4} \cdot p/(I_H - I_L)$ $X = 6.93 \cdot 10^{-4} \cdot p/(I_H - I_L)$ $I_L, I_H - \text{lower and upper}$ limit values of the output signal, mA	
10	Instruments measuring d	ifferential pressure	1	
10.1	Pressure calibrators (generators, controllers);	from $5 \cdot 10^{-2}$ to $1 \cdot 10^{2}$ Pa from $1 \cdot 10^{2}$ to $5 \cdot 10^{3}$ Pa	$U_{0.95} = 0.06 \text{ Pa}$ $U_{0.95} = 0.14 \text{ Pa}$	Direct comparison with GET 95
	sensors; digital pressure gauges	from $5 \cdot 10^3$ to $1 \cdot 10^5$ Pa	$U_{0.95} = 0.62$ Pa	
10.2	Micromanometers	from $5 \cdot 10^{-2}$ to $1 \cdot 10^{2}$ Pa	$U_{0.95} = 0.09 \text{ Pa}$	Direct comparison
		from 1.10^2 to 5.10^3 Pa	$U_{0.95} = 0.17$ Pa	with GET 95
		from 5.10^3 to 1.10^5 Pa	$U_{0.95} = 0.65$ Pa	
10.3	Pressure transmitters	from $5 \cdot 10^{-2}$ to $1 \cdot 10^{2}$ Pa	$U_{0.95} = 0.2 \text{ Pa}$	Direct comparison
	(calibrators)	from 1.10^2 to 5.10^3 Pa	$U_{0.95} = 0.51$ Pa	with GET 95
		from $5 \cdot 10^3$ to $1 \cdot 10^5$ Pa	$U_{0.95} = 2.2 \text{ Pa}$	

1	2	3	4	5
10.4	Deformation manometers	from $5 \cdot 10^{-2}$ to $1 \cdot 10^{2}$ Pa	$U_{0.95} = 2 \cdot Q^{10} [0.03 \text{ Pa}; 0.12 \cdot s],$ where <i>s</i> is the division value of the manometer scale, Pa	Direct comparison with GET 95
		from 1.10 ² to 5.10 ³ Pa	$U_{0.95} =$ 2 · Q ¹ [0.07 Pa; 0.12·s], where s is the division value of the manometer scale, Pa	
		from 5·10 ³ to 1·10 ⁵ Pa	$U_{0.95} =$ 2 · Q ¹⁾ [0.31 Pa; 0.12·s], where <i>s</i> is the division value of the manometer scale, Pa	
11	Instruments measuring a	bsolute pressure		
11.1	Piston pressure gauges	from 7·10 ³ to 1·10 ⁶ Pa	$U_{0.95} = 0.9 \text{ Pa} + 2.1 \cdot 10^{-5} \cdot p$, where p – measured pressure, Pa	Direct comparison with GET 101
11.2	Calibrators (setters, generators, controllers) pressure; converters, pressure sensors; digital	from 1·10 ⁻¹ to 1·10 ³ Pa	$U_{0.95} = 7.2 \cdot 10^{-3} \text{ Pa} + 1.0 \cdot 10^{-4} \cdot p$, where <i>p</i> – measured pressure, Pa	Direct comparison with GET 101
	pressure gauges	from 1.10^3 to $1.3.10^5$ Pa	$U_{0.95} = 1.0 \cdot 10^{-1} \text{ Pa} + 1.0 \cdot 10^{-5} \cdot r,$ where p – measured pressure, Pa	
		from 7·10 ³ to 1·10 ⁶ Pa	$U_{0.95} = 7.2 \cdot 10^{-3} \text{ Pa} + 1.0 \cdot 10^{-4} \cdot p$, where <i>p</i> – measured pressure, Pa	
11.3	Pressure transducers	from 1·10 ⁻¹ to 1·10 ³ Pa	$U_{0.95} = 2 Q^{10}[A; X]$ A = 3.6.10 ⁻³ Pa+5.0.10 ⁻⁵ · p, where p – measured pressure, Pa	Direct comparison with GET 101
		from 1·10 ³ to 1.3·10 ⁵ Pa	A = 5.2·10 ⁻² Pa +4.9·10 ⁻⁶ · <i>p</i> , where <i>p</i> – measured pressure, Pa	
		from 7·10 ³ to 1·10 ⁶ Pa	$A = 0.45 \text{ Pa} + 1.0 \cdot 10^{-5} \cdot p,$ where <i>p</i> is the measured pressure, Pa; <i>X</i> - calculated value for the range of the output signal	

1	2	3	4	5
		limits of outstanding		
		change of output signals:		
		from 0 to 0.1 V	$X = 6.93 \cdot 10^{-7} \cdot p / (U_H - U_L)$	
		from 0 to 1 V	$X = 3.0 \cdot 10^{-6} \cdot p / (U_H - U_L)$	
		from 0 to 10 V	$X = 2.19 \cdot 10^{-5} \cdot p/(U_H - U_L)$	
			U_L, U_H – lower and upper	
			limit values of the output	
			signal, v	
		from 0 to 10 mA	$X = 1./3 \cdot 10^{-4} \cdot p/(I_H - I_L)$	
		from 0 to 20 mA	$X = 0.93 \cdot 10^{-1} p/(I_H - I_L)$	
			$I_L, I_H = 10$ wer and upper limit values of the output	
			signal. mA	
114	Barometers	from $5 \cdot 10^2$ to $7 \cdot 10^3$	$U_{0.05} = 1.0 \cdot 10^{-1} \text{ Pa}_{\pm}$	Direct comparison
11.4	Darometers		$+1 0.10^{-5} \cdot n$	with GET 101
			where p – measured	
			pressure, Pa	
		from $7 \cdot 10^3$ to $1 \cdot 10^6$ Pa	$U_{0.95} = 2.1 \cdot 10^{-5} \cdot n + 0.9 \text{ Pa}.$	
			where p – measured	
			pressure, Pa	
11.5	Vacuum gauges, pressure	from 6.6.10 ⁻⁸ to 1.10 ⁻⁶	$U^{0}_{0.95} = 5.0 \%$	Direct comparison
	transducers, pressure	from 1.10^{-6} to 1.10^{-2} Pa incl.	$U^{0}_{0.95} = 4.8 \%$	with GET 101, GET
	sensors	ab. 1.10^{-2} to 1.10^{0} Pa	$U^{\rm o}{}_{0.95} = 1.4$ %	49, or with working
		from 1.10° to 1.10^{3} Pa	$U_{0.95} = 7.2 \cdot 10^{-3} \text{ Pa} +$	standard
			$+ 1.0 \cdot 10^{-4} \cdot p$,	
			where p – measured	
			pressure, Pa	
		from 1.10^3 to $1.3.10^5$ Pa	$U_{0.95} = 1.0 \cdot 10^{-1} \text{ Pa} +$	
			$+ 1.0 \cdot 10^{-5} \cdot r$,	
			where p – measured	
			pressure, Pa	
11.6	Vacuum gauge units	from $1 \cdot 10^{-7}$ to $1 \cdot 10^{-6}$	$U^{0}_{0.95} = 5.0 \%$	Direct comparison
		from $1 \cdot 10^{-6}$ to $1 \cdot 10^{-2}$ Pa incl.	$U_{0.95}^{0} = 4.8\%$	with GET 49, with
		ab. 1.10 ² to 1.10 ³ Pa	$U^{\circ}_{0.95} \equiv 1.4 \%$	working standard
11.7	Instruments measuring	from 10^{-15}	$U_{0.95}^{0} = (30 - 3)\%$	Direct comparison
	gas flow in vacuum:	$to 10^{-9} to 1^{-9} to 1^{-9} Pa/s$	$U^{\circ}_{0.95} = 3\%$	with working standard
	flow meters leak			and helium leaks
	detectors			implemented in the
				standard
11.8	Vapor pressure analyzers	from 8 to 19 kPa incl	$U_{0.95} = 1.6 \text{ kPa}$	Direct comparison
		ab. 19 to 115 kPa	$U_{0.95} = 1.0 \text{ kPa}$	with CRM
11.9	Vapor pressure standards	from 8 to 19 kPa incl.	$U_{0.95} = 0.8 \text{ kPa}$	Direct comparison
	· · · · · · · · · · · · · · · · · · ·	ab. 19 to 115 kPa	$U_{0.95} = 0.5 \text{ kPa}$	with working standard,
				Direct comparison
MEAS	UREMENTS OF THE PH	IYMICO-CHEMICAL C	OMPOMITION AND PR	OPERTIES OF
SUBST	ΓANCES			
12	Instruments measuring n	nolar (volume) fraction of	components in gaseous m	edia
12.1	Analytical and gas mixing	from 0 to 1.5.10 ⁻⁸ %	$J0.95 = 0.15 \ 10^{-8} \ \%(abs.)$	Direct measurement
	plants, instruments	from 1.5.10 ⁻⁸	$U_{0.95} = 10$ % (rel.)	method
	measuring content of	to 1.0·10 ⁻⁵ %	$U_{0.95} = 2.5 \%$ (rel.)	
	components in gaseous	from 1.0·10 ⁻⁵	$U_{0.95} = 1.0$ % (rel.)	
	media (inert gases,	to 1.0·10 ⁻⁴ %	$U_{0.95} = 0.5$ % (rel.)	

1	2	3	4	5
	permanent gases, reactive gases, hydrocarbon components, including vapors of petroleum products, freons, etc.), including: gas analyzers, signaling devices, gas analytical converters, measuring systems and measuring channels of measuring systems, gas analytical stations and atmospheric pollution control posts, indicator tubes, medical gas analyzers	from 1.0·10 ⁻⁴ to 1.0·10 ⁻² % from 1.0·10 ⁻² to 0.1 % from 0.1 to 1.0 % 1.0 to 50 % from 50 to 100 %	$U_{0.95} = 0.25$ % (rel.) $U_{0.95} = 0.2$ % (rel.) $U_{0.95} = 0.15$ % (rel.)	
12.2	Industrial gas chromatographs for determining component composition and impurities in natural	from 0.001 to 0.01 % from 0.01 to 0.1 %	$U_{0.95} = (4.2 - 215 \cdot C) \%$ (rel.) $U_{0.95} = (2.2 - 10 \cdot C) \%$ (rel.)	Direct measurement method
	associated, liquefied	from 0.1 to 1 %	$U_{0.95} = (1.24 - 0.7 \cdot C) \%$ (rel.)	
	condensate, etc.	from 1 to 10 %	$U_{0.95} = (0.56 - 0.014 \cdot C) \%$ (rel.)	
		from 10 to 20 %	$U_{0.95} = (0.53 - 0.01 \cdot C) \%$ (rel.)	
		from 20 to 50 %	$U_{0.95} = (0.38 - 0.003 \cdot C) \%$ (rel.)	
		from 50 to 99.97 %	$U_{0.95} = 0.2$ % (rel.) where <i>C</i> is the molar (volume) fraction, % (abs.)	
12.3	Gas chromatographs	from 0 to 99.97 %	$U_{0.95} = (1 \cdot 10^{-7} + 0.01 \cdot C) \%$ (abs.), where <i>C</i> is the molar (volume) fraction, % (abs.)	Direct measurement method
12.4	Chromatography–mass spectrometers, mass selective detectors	from 0 to 1.0 %	$U_{0.95} = (1 \cdot 10^{-7} + 0.01 \cdot C) \%$ (abs.), where <i>C</i> is the molar (volume) fraction, % (abs.)	Direct measurement method
12.5	Dilution type gas mixture generators	$\begin{array}{c} {\rm from}\; 1.0{\cdot}10^{-6} \\ {\rm to}\; 1.0{\cdot}10^{-4}\;\% \\ {\rm from}\; 1.0{\cdot}10^{-4}\;{\rm to} \\ 1.0{\cdot}10^{-2}\;\% \\ {\rm from}\; 1.0{\cdot}10^{-2}\;{\rm to}\; 99.9\;\% \end{array}$	$U_{0.95} = 2.0 \%$ (rel.) $U_{0.95} = 1.0 \%$ (rel.) $U_{0.95} = 0.5 \%$ (rel.)	Direct measurement method
12.6	Zero air generators	from 1.5·10 ⁻⁸ to 1.0·10 ⁻³ %	$U_{0.95}=10\%$ (rel.)	Direct measurement method
12.7	Ozone generators	From $3 \cdot 10^{-7}$ to $1 \cdot 10^{-6}$ % from $1 \cdot 10^{-6}$ to $2.5 \cdot 10^{-5}$ % from $2.5 \cdot 10^{-5}$ to $1 \cdot 10^{-3}$ %	$U_{0.95} = 4.8 \% \text{ (rel.)}$ $U_{0.95} = 2.7 \% \text{ (rel.)}$ $U_{0.95} = 2.4 \% \text{ (rel.)}$	Direct measurement method

1	2	3	4	5
13	Instruments measuring m	nass concentration of com	ponents in gaseous media	
13.1	Analytical and gas mixing plants, instrument	from 0 to $1.5 \cdot 10^{-4} \text{ mg/m}^3$	$U_{0.95} = 0.15 \cdot 10^{-4} \text{ mg/m}^3$ (abs.)	Direct measurement method
	measuring content of components in gaseous	from $1.5 \cdot 10^{-4}$ to $1.0 \cdot 10^{-1} \text{ mg/m}^3$	$U_{0.95} = 10$ % (rel.)	
	permanent gases, reactive gases, hydrocarbon	from 1.0·10 ⁻¹ to 1.0 mg/m ³	$U_{0.95} = 2.5$ % (rel.)	
	components, including vapors of petroleum	from 1.0 to $1.0 \cdot 10^2 \text{ mg/m}^3$	$U_{0.95} = 1.0$ % (rel.)	
	products, freons, etc.), including: gas analyzers,	from $1.0 \cdot 10^2$ to $1.0 \cdot 10^3$ mg/m ³	$U_{0.95} = 0.5$ % (rel.)	
	analytical converters,	from 1.0·10 ³ to 1.0·10 ⁴ mg/m ³	$U_{0.95} = 0.25$ % (rel.)	
	measuring systems and measuring channels of measuring systems, gas	from $1.0 \cdot 10^4$ to $5 \cdot 10^5$ mg/m ³	$U_{0.95} = 0.2$ % (rel.)	
	analytical stations and air pollution control posts, indicator tubes, medical gas analyzers	from 5·10 ⁵ to 1.0·10 ⁶ mg/m ³	$U_{0.95} = 0.15$ % (rel.)	
13.2	Flammable liquid vapor generators	from $1.5 \cdot 10^3$ to $2.0 \cdot 10^5$ mg/m ³	$U_{0.95} = 2$ % (rel.)	Direct measurement method
13.3	Ozone generators	from $6 \cdot 10^{-3}$ to $2 \cdot 10^{-2}$ mg/m ³	$U_{0.95} = 4.8 \%$ (rel.)	Direct measurement method
		to 0.5 mg/m ³ from 0.5 to 20 mg/m ³	$U_{0.95} = 2.7$ % (rel.) $U_{0.95} = 2.4$ % (rel.)	
13.4	Zero air generators	from 1.5·10 ⁻⁴ to 10 mg/m ³	$U_{0.95} = 10$ % (rel.)	Direct measurement method
13.5	Thermodiffusion and electrochemical generators, generators based on saturation method	$\begin{array}{c} {\rm from}\; 1.0\cdot 10^{-6} \\ {\rm to}\; 2.0\cdot 10^{-2} \; {\rm mg/m}^{\;3} \\ {\rm from}\; 2.0\cdot 10^{-2} \; {\rm to} \\ 1.0 \; {\rm mg/m}^{3} \\ {\rm from}\; 1.0 \; {\rm to} \\ 1500 \; {\rm mg/m}^{3} \end{array}$	$U_{0.95} = 2 \%$ (rel.)	Direct measurement method
13.6	Sources of gas and vapor microflows	from 1.0·10 ⁻⁵ to 1.0·10 ⁻⁴ μg/min	$U_{0.95} = 3 \%$ (rel.)	Direct measurement method
		from 1.0·10 ⁻⁴ to 0.10 μg/min	$U_{0.95} = 2$ % (rel.)	
		from 0.10 to 1.0 μg/min	$U_{0.95} = 1$ % (rel.)	
		from 1.0 to 50 µg/min	$U_{0.95} = 0.7 \%$ (rel.)	
13.7	Vapor–phase sources of gas mixtures	from 0.5 to 5 mg/m ³ from 5 to 1000 mg/m ³	$U_{0.95} = 3.5$ % (rel.) $U_{0.95} = 2.5$ % (rel.)	Direct measurement method
13.8	Generators of gas mixtures of ethanol vapor in air	from 20 to 2000 mg/m ³	$U_{0.95} = 0.5$ % (rel.)	Direct measurement method
13.9	Ethanol vapor analyzers and detectors in exhaled air	from 0 to 2.00 mg/l	$U_{0.95} = (0.001 + + 0.015 C) mg/l,$ where C is mass concentration, mg/l	Direct measurement method

1	2	3	4	5
13.10	Gas chromatographs	from 0 to 99.97 \cdot 10 ⁴ mg/m ³	$U_{0.95} = (1 \cdot 10^{-3} + 0.01 \cdot C) \text{ mg/m}^3,$ where C - mass concentration, mg/m ³	Direct measurement method
13.11	Chromatography mass- spectrometers, mass selective detectors	from 0 to $1.0 \cdot 10^4 \text{ mg/m}^3$	$U_{0.95} = (1 \cdot 10^{-3} + 0.01 \cdot C) \text{ mg/m}^3,$ where C - mass concentration, mg/m ³	Direct measurement method
14	Instruments measuring p	re–explosive concentration	ns of components in gaseo	us media
14.1	Gas analyzers, signaling devices, gas analytical converters, measuring systems and measuring channels of measuring systems	from 0 to 1 % LEL from 1 to 50 % LEL from 50 to 100 % LEL	$U_{0.95} = 0.025 \%$ LEL $U_{0.95} = 1.5 \%$ (rel.) $U_{0.95} = 0.6 \%$ (rel.)	Direct measurement method
14.2	Flammable liquid vapor generators	from 5 to 50 % LEL	$U_{0.95} = 2 \%$ (rel.)	Direct measurement method
15	Instruments measuring in	ntegral concentration of co	omponents in gaseous med	ia
15.1	Gas analyzers, signaling	from 0 to 1 % LEL· m	$U_{0.95} = 0.025 \% \text{ LEL} \cdot \text{m}$	Direct measurement
	devices, gas analytical converters, measuring	ab. 1 to 10 % LEL· m	$U_{0.95} = 1 \%$ (rel.)	method
	systems and measuring	from 0 to 0.5 ppm \cdot m	$U0.95 = 0.025 \text{ ppm} \cdot \text{m}$	
	systems	ab. 0.5 to 3 000 000 ppm m	U0.95 = 2.5% (rel.)	
16	Instruments measuring m	ass fraction of componen	ts in liquid media	
16.1	Liquid chromatographs, gas chromatographs, mass spectrometers, mass selective detectors	from 0 to 0.1 %	$U_{0.95} = (1 \cdot 10^{-7} + 0.01 \cdot C)\%$ (abs.), where <i>C</i> is mass fraction,% (abs.)	Direct measurement method
17	Instruments measuring m	ass concentration of com	ponents in liquid media	
17.1	Liquid chromatographs, gas chromatographs, mass spectrometers, mass selective detectors	from 0 to $1 \cdot 10^6 \text{ mg/m}^3$	$U_{0.95} = (1 + 0.01 \cdot C)$ mg/m ³ , where C is the mass concentration, mg/m ³	Direct measurement method
17.2	Flame photometric analyzers	$\begin{array}{c} {\rm from \ 0 \ to \ 0.01 \ mg/dm^3} \\ {\rm from \ 0.01 \ to} \\ {\rm 5.0 \ mg \ /dm^3} \\ {\rm from \ 5.0 \ to} \\ {\rm 1000 \ mg/dm^3} \end{array}$	$U_{0.95} = 0.002 \text{ mg/dm}$ $U_{0.95} = 2.0 \% \text{ (rel.)}$ $U_{0.95} = 1.6 \% \text{ (rel.)}$	Direct measurement method
18	Instruments measuring co	ounting concentration of a	erosol particles	
18.1	Aerosol particle counters (air dust control devices)	from $1 \cdot 10^2$ to $1 \cdot 10^9$ particles/m ³	U _{0.95} = 5 %	Direct comparison
		from $1 \cdot 10^9$ to $1 \cdot 10^{14}$ particles/m ³	$U_{0.95} = 10$ %	
19	Instruments measuring m	ass concentration of aero	sol particles	
19.1	Aerosol photometers (fil- ter breakthrough coeffi- cient from 0 to 100%)	from 0.02 to 1500 mg/m ³	$U_{0.95} = 5 \%$	Direct comparison
19.2	Mass concentration meters of suspended	from 0.02 to 1500 mg/m ³	$U_{0.95} = 5 \%$	Direct comparison

1	2	3	4	5
	particles in air (aerosol	from 1500 to	$U_{0.95} = 6 \%$	
	(dust) analyzers, aerosol	15000 mg/m ³		
	(dust) mass concentration			
	meters, dust meters)			
19.3	Fractional composition	from 0.02 to	$U_{0.95} = 5 \%$	Direct comparison
	meters for mass	1500 mg/m^3		
	concentration of	from 1500 to	$U_{0.95} = 6 \%$	
	suspended particles,	15000 mg/m^3		
	including RM10, RM2.5,			
	RM1 (analyzers (meters)			
	of fractional composition			
	of aerosol (dust),			
	analyzers (meters) of the			
	arosol (dust) impactors			
	cyclones measuring			
	transducers of dispersed			
	composition aerodynamic			
	converters of the			
	dispersed composition of			
	aerosol particles)			
20	Instruments measuring a	erodynamic diameter of a	erosol narticles	
20.1	Erectional composition	from 0.5 to 20 um	U = 10.0	Direct comparison
20.1	meters for the mass	110111 0.5 to 20 µ111	$U_{0.95} - 10^{-70}$	Direct comparison
	concentration of			
	suspended particles			
	including RM10, RM2.5.			
	RM1 (analyzers (meters)			
	of fractional composition			
	of aerosol (dust),			
	analyzers (meters) of the			
	dispersed composition of			
	aerosol (dust), impactor,			
	cyclones, measuring			
	transducers of dispersed			
	composition, aerodynamic			
	converters of the			
	dispersed composition of			
21	Instruments measuring p	article size	r	1
21.1	Particle size analyzers for	from 0.01 to 3500 µm	$U_{0.95} = 5 \%$	Direct measurement
	liquid media and powder			method
	materials (dispersion			
	parameters meters,			
	suspension analyzers)			
21.2	Particle size analyzers for	from 1000 to	$U_{0.95} = 10 \ \mu m$	Direct comparison
	liquid media and powder	10000 μm		
	materials (dispersion pa-			
	rameters meters, suspen-			
<u> </u>	sion analyzers)			
22	Instruments measuring co	ounting concentration of p	particles in liquids	
22.1	Liquid particle counters	from 1.10^2 to	$U_{0.95} = 8 \%$	Direct comparison
	(particle count meters, liq-	$1 \cdot 10^{14}$ particles/cm ³		

1	2	3	4	5
	uid purity analyzers, liq- uid purity control devices)			
23	Instruments measuring co	ounting concentration of l	light air ions	
23.1	Light ion aspiration coun- ters	from $1 \cdot 10^2$ to $1 \cdot 10^6$ particles/cm ³	$U_{0.95} = 20 \%$	Direct comparison
24	Instruments measuring tu	ırbidity		
24.1	Turbidity analyzers (turbi- dimeters, turbidimeters)	from 0.1 to 1 FMU from 1 to 4000 FMU	$U_{0.95} = 3 \%$ $U_{0.95} = 2.5 \%$	Direct measurement method
25	Instruments measuring m	ass fraction of substances	s	
25.1	Ash content analyzers	(0 – 90) %	$U_{0.95} = 3 \% \text{ (rel.)}$	SK 03–2414–10– 2021–T Method of direct measurements using CRM
25.2	Analyzers for composition and physico–chemical properties of oil and oil products	0 to 1·10 ⁻⁴ % 1·10 ⁻⁴ to 10 %	$U_{0.95} = 5 \cdot 10^{-6} \%$ (abs.) $U_{0.95} = 3 \%$ (rel.)	Direct measurement method
25.3	Analyzers of water in liquid, solid and bulk substances and materials (hygrometers)	0.1 to 2.5 % from 2.5 to 100 %	$U_{0.95} = 3 \%$ (rel.) $U_{0.95} = 1.5 \%$ (rel.)	Direct measurement method
25.4	Titrators	from 0.0001 to 0.015 % from 0.015 to 0.1 % from 1 to 100 %	$U_{0.95} = 4$ % (rel.) $U_{0.95} = 2$ % (rel.) $U_{0.95} = 1$ % (rel.)	Direct measurement method
26	Instruments measuring v	olume fraction of substan	ces	
26.1	Analyzers for composition and physico–chemical properties of oil and oil products	from 0.1 to 10 % from 10 to 60 %	$U_{0.95} = 3 \%$ (rel.) $U_{0.95} = 1.5 \%$ (rel.)	Direct measurement method
26.2	Analyzers of water in liquid, solid and bulk substances and materials (hygrometers)	from 0 to 100 %	$U_{0.95} = (0.01 + 0.05 \cdot C) \%$ (abs.), where <i>C</i> is the volume fraction, % (abs.)	Direct measurement method
26.3	Titrators	from 0.0001 to 0.015 % from 0.015 to 0.1 % from 1 to 100 %	$U_{0.95} = 4$ % (rel.) $U_{0.95} = 2$ % (rel.) $U_{0.95} = 1$ % (rel.)	Direct measurement method
27	Instruments measuring m	ass of substances in analy	yzed sample	
27.1	Titrators	from $1 \cdot 10^{-4}$ to 200 mg	$U_{0.95} = 1.5$ % (rel.)	Direct measurement method
28	Instruments measuring p	H of liquid media	1	1
28.1	Titrators	from 0 to 14 pH	$U_{0.95} = 0.02 \text{ pH}$	Direct measurement method
29	Instruments measuring fl	ash point of combustible	liquids	
29.1	Open crucible flash point temperature analyzers	from 60 to 130 °C 130 to 300 °C	$U_{0.95} = 2.6 ^{\circ}\text{C}$ $U_{0.95} = 5.6 ^{\circ}\text{C}$	Direct measurement method
29.2	Closed crucible flash point temperature	from minus 70 to minus 10 °C	$U_{0.95} = 4 {}^{\mathrm{o}}\mathrm{C}$	Direct measurement method

1	2	3	4	5
	analyzers	from minus 10 to 30 °C	$U_{0.95} = 2 {}^{\circ}\mathrm{C}$	
		from 30 to 104 °C	$U_{0.95} = 1.2 ^{\circ}\text{C}$	
		from 104 to 300 °C	$U_{0.95} = 2.4 ^{\circ}\text{C}$	
30	Instruments measuring tu temperatures of petroleu	urbidity/solidification/flow m products and chemical	v loss/crystallization/filter: products	ability limit
30.1	Turbidity/solidification/lo ss of yield/crystallization/ filterability limit temperature analyzers	from minus 70 before minus 45 °C from minus 45 to 10 °C	$U_{0.95} = 1.4 {}^{\mathrm{o}}\mathrm{C}$ $U_{0.95} = 0.6 {}^{\mathrm{o}}\mathrm{C}$	Direct measurement method
31	Instruments measuring m	ass concentration of oil p	roducts in liquid media	
31.1	Analyzers of petroleum products in liquid media	from 0 to 0.5 mg/dm ³ from 0.5 to 1000 mg/dm ³	$U_{0.95} = 0.11 \text{ mg/dm}^3$ $U_{0.95} = (0.20 + + 0.05 \cdot C) \text{ mg/dm}^3$ where $C - \text{mass}$ concentration, mg/dm ³	Direct measurement method
32	Instruments measuring v	olume fraction of gases di	ssolved in transformer oil	I
32.1	Analyzers of gases dissolved in transformer oil: – methane (CH ₄), ethylene (C ₂ H ₄), ethane (C ₂ H ₆)	from 1 to 10 ppm from 10 to 50 ppm from 50 to 10000 ppm	$U_{0.95} = 30 \% \text{ (rel.)}$ $U_{0.95} = (36 - 0.6 \cdot C) \%$ (rel.) $U_{0.95} = 6 \% \text{ (rel.)}$	Direct measurement method
	- carbon monoxide (CO), carbon dioxide (CO ₂), hydrogen (H ₂), acetylene (C ₂ H ₂)	from 50 to 10000 ppm	$U_{0.95} = 30$ % (rel.) $U_{0.95} = (30 - 0.0024 \cdot C)$ % (rel.), where <i>C</i> is the volume fraction, ppm	
33	Instruments measuring m	nass fraction of elements in	n metals	
33.1	Emission spectrometers	from 0.0006% to 0.010% ab. 0.010% to 0.10% ab. 0.10% to 1.0% ab. 1.0% to 89%	$U_{0.95} = 30 \% \text{ (rel.)}$ $U_{0.95} = 10 \% \text{ (rel.)}$ $U_{0.95} = 5 \% \text{ (rel.)}$ $U_{0.95} = 3 \% \text{ (rel.)}$	Direct measurement method
34	Instruments measuring re	edox potential	·	
34.1	pH/pX meters and converters for laboratory and industrial use, ionometers, redox meters	from minus 200 to 1500 mV at 25 °C	$U_{0.95} = 6 \text{ mV}$	Method of direct measurements using buffer solutions – discharge working standards SK 03–209–6.1.2.2/01
35	Instruments measuring N	Iass concentration		
35.1	Liquid analyzers: conductometric, salt meters, total salt content meters, signaling devices and conductometric type concentrators	from 0.001 to 150 g/dm ³	U° _{0.95} = 5 %	Method of indirect measurements with conductometers – working standards of the 2nd class, with measures of electrical resistance, SK 03–2450–001–T
35.2	Analyzers of dissolved gases in liquids (O ₂ , O ₃ , Cl ₂ , H ₂ , CO ₂ etc.)	from 0 to $2000 \ \mu g/dm^3$ from 2000 to $20000 \ \mu g/dm^3$	$U_{0.95} = 40 \ \mu g/dm^3$ $U^{0}_{0.95} = 2 \ \%$	Method of indirect measurements using standard samples MK SK 03–2450–004–T

1	2	3	4	5
36	Instruments measuring ic	on activity		
36.1	pH/pX meters and converters for laboratory and industrial use, ionometers, redox meters	pH at temperature 25 °C: 1.65; 4.01; 6.86; 9.18 pX at temperature 25 °C: to 7	$U_{0.95} = 0.1$ $U_{0.95} = 0.2$	Direct measurement method using buffer solutions with discharge working standards SK 03–209–6.1.2.2/01
37	Instruments measuring s	pecific electrical conductiv	ity	
37.1	Liquid analyzers: conductometric, salt meters, total salt content meters, signaling devices and conductometric type concentrators	from 1 · 10 ⁻⁶ to 1 10 ⁻⁴ incl. cm/m at 25 °C ab. 1 · 10 ⁻⁴ to 35 S/m at 25 °C	$U^{0}_{0,95} = 2 \%$ $U^{0}_{0,95} = 0,1 \%$	Method of indirect measurements with conductometers – working standards of the 2nd class, with measures of electrical resistance SK 03–2450–001–T
37.2	Installations for conductometric testing	ab. 1·10 ⁻⁴ to 35 S/m at 25 °C	$U^{\rm o}{}_{0,95} = 0,1$ %	Direct comparison with GET 132, SK 03–2450–001–T
38	Instruments measuring sj water salinity	pecific electrical conductiv	ity (SEC), relative electri	cal conductivity, sea
38.1	SEC measuring channels as part of hydrophysical probes (stationary, ship, cable, lost, drifting and autonomous) for measuring SEC, GEP and sea water salinity	0.1 to 7 S/m at 25 °C from 0.1 to 2 relative units at 25 °C and pressure 101.1 kPa	$U^{\circ}_{0.95} = 0.1 \%$ $U^{\circ}_{0.95} = 0.3 \%$	Direct comparison with working standards of the 2nd class SK 03–2450–002–T
		at 25 °C and pressure 101.1 kPa	$U_{0.95} = 0.02$ P.E.S.	
39	Instruments measuring v	iscosity of liquids		·
39.1	Standard (reference) glass capillary viscometers	from $1.6 \cdot 10^{-9}$ to $5.5 \cdot 10^{-5}$ m ² /s ²	$U_{0.95} = (0,0109 \ln(C) + 0,2714) \%,$ where C - nominal value of the viscometer constant, m ² /s ²	Comparison with refer- ence viscometers from GET 17 using com- parator (calibration liq- uid)
39.2	Reference complexes de-	to $3.4 \cdot 10^{-6} \text{ m}^2/\text{s}$	$U_{0.95} = 0.10$ %	
	signed for storage and transmission of the unit of kinematic viscosity of liq-	from $1 \cdot 10^{-6}$ to $1 \cdot 10^{-5}$ m ² /s	$U_{0.95} = 0.11$ %	
	uid (working standards of the	from 3.4 · 10 ⁻⁶ to 3.4 · 10 ⁻⁵ m ² /s	$U_{0.95} = 0.12$ %	Comparison with GET
	unit of kinematic viscosity of liquid of the 1st class)	from $8 \cdot 10^{-6}$ to $8 \cdot 10^{-5}$ m ² /s	$U_{0.95} = 0.13$ %	17 using comparator (calibration liquid)
		from $1 \cdot 10^{-5}$ to $1 \cdot 10^{-4}$ m ² /s	$U_{0.95} = 0.14$ %	
		from $1.6 \cdot 10^{-5}$ to $1.6 \cdot 10^{-4}$ m ² /s	$U_{0.95} = 0.14$ %	

1	2	3	4	5
		from 3.4·10 ⁻⁵ to 3.4·10 ⁻⁴ m ² /s	$U_{0.95} = 0.15$ %	
		from 5.4·10 ⁻⁵ to 5.4 10 ⁻⁴ m ² /s	$U_{0.95} = 0.16$ %	
		from $1 \cdot 10^{-4}$ to $1 \cdot 10^{-3}$ m ² /s	$U_{0.95} = 0.17$ %	
		from 2.4·10 ⁻⁴ to 2.4 10 ⁻³ m ² /s	$U_{0.95} = 0.17$ %	
		from $3.4 \cdot 10^{-4}$ to $3.4 \cdot 10^{-3}$ m ² /s	$U_{0.95} = 0.18$ %	
		from $1 \cdot 10^{-3}$ to $1 \cdot 10^{-2}$ m ² /s	$U_{0.95} = 0.18$ %	
		from 3.4 · 10 ⁻³ to 3.4 · 10 ⁻² m ² /s	$U_{0.95} = 0.19\%$	
		from $1 \cdot 10^{-2}$ to $1 \cdot 10^{-1}$ m ² /s	$U_{0.95} = 0.20\%$	
39.3	Liquid viscosity standards	to $2 \cdot 10^{-6} \text{ m}^2/\text{s}$	$U_{0.95} = 0.05\%$	
	(calibration fluids)	from $0.6 \cdot 10^{-7}$ to $1 \cdot 10^{-5}$ m ² /s	$U_{0.95} = 0.05\%$	
		from $2 \cdot 10^{-6}$ to $2 \cdot 10^{-5}$ m ² /s	$U_{0.95} = 0.06\%$	
		from $1 \cdot 10^{-5}$ to $1 \cdot 10^{-4}$ m ² /s	$U_{0.95} = 0.07\%$	
		from $2 \cdot 10^{-5}$ to $2 \cdot 10^{-4}$ m ² /s	$U_{0.95} = 0.09\%$	Method of direct meas- urements on
		from 1 10 ⁻⁴ to 1 10 ⁻³ m ² /s	$U_{0.95} = 0.10\%$	GET 17
		from $2 \cdot 10^{-4}$ to $2 \cdot 10^{-3}$ m ² /s	$U_{0.95} = 0.11\%$	
		from 1 10 ⁻³ to 1 10 ⁻² m ^{2/s}	$U_{0.95} = 0.12\%$	
		from $2 \cdot 10^{-3}$ to $2 \cdot 10^{-2}$ m ² /s	$U_{0.95} = 0.14\%$	
		from $1 \cdot 10^{-2}$ to $1 \cdot 10^{-1}$ m ² /s	$U_{0.95} = 0.15\%$	
39.4	Glass capillary viscome- ters	from $7 \cdot 10^{-10}$ to $3 \cdot 10^{-4}$ m ² /s	<i>U</i> _{0.95} = 0.2 %	Comparison with working standard of the 1st class using comparator (calibration liquid)
39.5	Glass capillary viscome- ters, automatic viscome- ters	to $1 \cdot 10^{-1} \text{ m}^2/\text{s}$	$U_{0.95} = 0.2\%$	Comparison with working standard of the 1st class using comparator (calibration liquid)
36.6	Rotational viscometers, rheometers	from 1·10 ⁻³ to 100 Pa·s	$U_{0.95} = 0.2\%$	Method of direct meas- urements using stand- ard samples of fluid viscosity (calibration liquids)
39.7	Viscometers of conven- tional viscosity (VU and VZ) type, cup viscometers	from 5 to 600 s	$U_{0.95} = 1.0\%$	Method of direct meas- urements using stand- ard samples of fluid viscosity (calibration fluids)

1	2	3	4	5
39.8	Ball viscometers	from 0.008 to 35.0 MPa \cdot cm ⁻³ g ⁻¹ from 0.5 \cdot 10 ⁻³ to 100 Pa \cdot s	$U_{0.95} = 0.5\%$	Method of direct meas- urements using stand- ard samples of viscos- ity of liquids(calibra- tion liquids)
39.9	Converters for viscosity of liquids (working standards of the 1st class)	to 1.10 ⁻² Pa·s ab. 1·10 ⁻² to 10 Pa·s	$U_{0.95} = 6.5 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$ U = 0.5 %	Method of direct com- parison with GET 17
39.10	In–line viscometers, vis- cosity converters	from 5·10 ⁻⁴ to 1·10 ⁻² Pa·s ab. 1·10 ⁻² to 100 Pa·s	$U_{0.95} = 2 \cdot 10^{-5} \text{ Pa} \cdot \text{s}$ $U_{0.95} = 1 \%$	Method of direct com- parison with working standard of the 1st class Method of direct meas- urements of density on DMA 5000M
39.11	Stabinger viscometers	to 40 Pa \cdot s to 4 \cdot 10 ⁻² m ² /s from 650 to 3000 kg/m ³	$U_{0.95} = 0.2 \%$ $U_{0.95} = 0.2 \%$ $U_{0.95} = 0.5 \text{ kg/m}^3$	Comparison with working standard of the 1st class using comparator (calibration liquid) Method of direct meas- urements of density on DMA 5000M. Method of direct measurements using CRMs of liquid viscosity (calibration liquids) and CRMs of liquid density (calibration liquids)
39.12	Falling number analyzers	from 1 to 1000 s	$U_{0.95} = 0.5$ %	Method of direct meas- urements using elec- tronic stopwatch
40	Instruments measuring d	ensity		
40.1	Secondary standards of the unit of density Hydrostatic weighing in- stallations	from 650 to 23000 kg/m ³	$U_{0.95} = 5.0 \cdot 10^{-3} \text{ kg/m}^3$	Comparison with GET 18 using comparator (density measures – transfer standards)
40.2	Liquid density standards (calibration liquids)	from 650 to 1630 kg/m ³	$U_{0.95} = 2.0 \cdot 10^{-3}$ %	Method of direct meas- urements on GET 18
40.3	Secondary standards of the unit of density in flow	from 280 to 2000 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-2} \text{ kg/m}^3$	Comparison with GET 18 using comparator (calibration liquid)
40.4	Automatic in–line and submersible density meters, density converters, density measurement channels of	from 0.17 to 170 kg/m ³ from 0.1 to 10 MPa ab. 170 to 280 kg/m ³	$U_{0.95} = 2.7 \cdot 10^{-2} \%$ $U_{0.95} = 3.0 \cdot 10^{-1} \%$	Direct measurement method (pure gases)
	mass flow meters and measuring systems	ab. 280 to 650 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-2} \text{ kg/m}^3$	Method of direct meas- urements on GET 18

1	2	3	4	5
		ab. 650 to 3000 kg/m ³	$U_{0.95} = 1.0 \cdot 10^{-1} \text{ kg/m}^3$	Method of direct Comparison with working standard
40.5	Densitometers automatic laboratory	from 0.17 to 170 kg/m ³ from 0.1 to 10 MPa	$U_{0.95} = 2.7 \cdot 10^{-2}$ %	Direct measurement method
		ab. 170 to 280 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-1}$ %	(pure gases)
		ab. 280 to 650 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-2} \text{ kg/m}^3$	Method of direct meas- urements on GET 18
		ab. 650 to 3000 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-3} \text{ kg/m}^3$	Method of direct comparison with working standard
40.6	Glass pycnometers	from 5 to 24 cm ³ ab. 24 to 49 cm ³ ab. 49 to 99 cm ³ ab. 99 to 2000 cm ³	$U_{0.95} = 1.3 \cdot 10^{-3} \%$ $U_{0.95} = 7.5 \cdot 10^{-4} \%$ $U_{0.95} = 5.0 \cdot 10^{-4} \%$ $U_{0.95} = 3.6 \cdot 10^{-4} \%$	Comparison with GET
40.7	Pressure metal pycnome-	from 100 to 399 cm ³	$U_{0.95} = 7.6 \cdot 10^{-4} \%$	18 using comparator (calibration liquid)
	ters	from 400 to 2000 cm ³	$U_{0.95} = 1.1 \cdot 10^{-3} \%$	(canoration inquid)
40.8	Settings pycnometric	from 500 to 2000 kg/m ³	$U_{0.95} = 1.0 \cdot 10^{-1} \text{ kg/m}^3$	
40.9		from 0.17 to 170.00 kg/m ³ from 0.1 to 10.0 MPa	$U_{0.95} = 2.7 \cdot 10^{-2}$ %	Direct measurement method
	Gas density meters	ab. 170 to 280 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-1}$ %	(pure gases)
		ab. 280 to 400 kg/m ³	$U_{0.95} = 3.0 \cdot 10^{-2} \text{ kg/m}^3$	Method of direct meas- urements on GET 18
40.10	Hydrometers	from 650 to 1850 kg/m ³	$U_{0.95} = 0.09 \text{ kg/m}^3$	Method of direct meas-
40.11	pressure hydrometers	from 300 to 650 kg/m ³	$U_{0.95} = 0.4 \text{ kg/m}^3$	urements on GET 18
40.12	Reference measures for the density of a solid	from 200 to 23000 kg/m ³	$U_{0.95} = 1.8 \cdot 10^{-3} \text{ kg/m}^3$	Method of direct com- parisons on GET 18
THER	MOPHYMICAL AND TE	MPERATUWS MEASU	REMENTS	
41	Temperature measuring	instruments		
41.1	Standard platinum resistance thermometers,	(minus 200 – 0) °C	$U_{0.95} = (2 \cdot 10^{-3} - 1.4 \cdot 10^{-4}) ^{\circ}\text{C}$	
		(0 – 660.323) °C	$U_{0.95} = (1.4 \cdot 10^{-4} - 4 \cdot 10^{-3}) ^{\circ}\text{C}$	measurements in fixed
		(660.323 – 1100 °C)	$U_{0.95} = (4 \cdot 10^{-3} - 4 \cdot 10^{-2}) ^{\circ}\text{C}$	point cens of wrrs-90
41.2	Equipment for realization of fixed points,	(minus 189.3442 – – 0) °C	$U_{0.95} = (2 \cdot 10^{-3} - 1.4 \cdot 10^{-4}) ^{\circ}\text{C}$	
	temperature standards	(0 – 660.323) °C	$U_{0.95} = (1.4 \cdot 10^{-4} - 1.10^{-3}) ^{\circ}\text{C}$	Method of direct comparison with
		(660.323 – 1085 °C)	$U_{0.95} = (1 \cdot 10^{-3} - 2 \cdot 10^{-3}) ^{\circ}\text{C}$	standard
		(1085 – 3000 °C)	$U_{0.95} = (1 \cdot 10^{-3} - 0.2)$ °C	
41.3	Thermoelectric platinum– rhodium converters – platinum, thermoelectric converters made of precious metals	(231.928 – 1084.62)°C (300 – 1200) °C	$U_{0.95} = (2 \cdot 10^{-3} - 2 \cdot 10^{-2}) ^{\circ}\text{C}$ $U_{0.95} = 0.7 ^{\circ}\text{C}$	Method of direct measurements in fixed point cells of MTS–90

1	2	3	4	5
41.4	Platinum–rhodium thermoelectric converters, precious metal thermoelectric converters	(660.323 – 1768.4) °C (600 – 1800) °C	$U_{0.95} = (2 \cdot 10^{-3} - 2 \cdot 10^{-1}) ^{\circ}\text{C}$ $U_{0.95} = (0.7 - 1.5) ^{\circ}\text{C}$	Method of direct measurements in fixed point cells of MTS–90
41.5	Non–precious metal thermoelectric converters	(minus 200 – 2500) °C	$U_{0.95} = (0.8 - 3.5) ^{\circ}\mathrm{C}$	Method of direct comparison with standard thermometer
41.6	Thermal converters (thermometers) of resistance, sets of thermometers	Temperature range (minus 200 – 850) °C Temperature difference range (0 – 180) °C	$U_{0.95} = (0.004 - 0.1)$ °C	Method of direct comparison with standard thermometer
41.7	Temperature calibrators and dry– well thermostats	(minus 200 – 1800) ° C (0.01 – 4000) Ω (minus 0.1 – 12) V (0 – 50) mA	$U_{0.95} = (0.01 - 20)$ °C	Direct measurement method
41.8	Temperature calibrators and liquid thermostats	(minus 100 – 1100) ° C (0.01 – 4000) Ω (minus 0.1 – 12) V (0 – 50) mA	$U_{0.95} = (0.01 - 20) ^{\circ}\mathrm{C}$	Direct measurement method
41.9	Bimetallic thermometers	(minus 200 – 300) °C	$U_{0.95} = 1.0 \ ^{\circ}\mathrm{C}$	Method of direct comparison with standard thermometer
41.10	Manometric thermometers	(minus 100 – 300) °C	$U_{0.95} = 1.0 \ ^{\circ}\mathrm{C}$	Method of direct comparison with standard thermometer
41.11	Quartz semiconductor thermometers,	(minus 80 – 300) °C	$U_{0.95} = (0.007 - 0.01)$ °C	Method of direct comparison with standard thermometer
41.12	Digital thermometers, thermometers, thermometers with unified digital signal	(minus 200 – 2500) °C (0 – 24) mA (0 – 12) V	$U_{0.95} = (0.009 - 0.6)$ °C	Method of direct comparison with standard thermometer
41.13	Liquid glass thermometers	(minus 80 – 300) °C	$U_{0.95} = (0.03 - 0.4)$ °C	Method of direct comparison with standard thermometer
41.14	Secondary temperature converters, measuring– regulators	(minus 200 – 2500) ° C	$U_{0.95} = (0.01 - 30)$ °C	Method of direct comparison with standard
41.15	Standard temperature lamps (bright)	(800 – 2100) °C	$U_{0.95} = (0.2 - 2.0)$ °C	Comparison method using comparator
41.16	Standard temperature lamps (color)	(900 – 3000) °C	$U_{0.95} = (0.4 - 4.0)$ °C	Comparison method using comparator
41.17	Monochromatic pyrome- ters, standard monochro- matic pyrometers	from 250 to 15000 °C	$U_{0.95} = (3.05 \cdot 10^{-4} \cdot t + 2)$ °C, where t – temperature, °C	Direct measurement method (or) comparison using comparator
41.18	Spectral distribution py- rometers	from 250 to 3500 °C	$U_{0.95} = (3.05 \cdot 10^{-4} \cdot t + 2)$ °C, where <i>t</i> – temperature, °C	Direct measurement method (or) comparison using comparator

1	2	3	4	5
41.19	Pyrometers of total and partial standard radiation	from 220 to 273 K	$U_{0.95} = (5.66 \cdot 10^{-3} \cdot T + 0.3)$ K, where <i>T</i> - temperature K	Direct measurement method (or)
		from 0 to 3000 °C	$U_{0.95} = (1.8 \cdot 10^{-3} \cdot t + 0.6)$ °C, where <i>t</i> – temperature °C	comparator
41.20	Total and partial radiation	from 220 to 273 K	$U_{0.95} = (2.26 \cdot 10^{-2} \cdot T + 0.8) K$	Direct measurement
	thermometers, radiation thermometers	from 0 to 3000 °C	where T – temperature, K $U=(1.9 \cdot 10^{-3} \cdot t + 0.8)$ °C, where t – temperature, °C	comparison using comparator
41.21	Thermal imagers, standard	from 220 to 273 K	$U_{0.95} = (2.26 \cdot 10^{-2} \cdot T + 10^{-2} \cdot T)^{-2}$	Direct measurement
	thermal imagers, pyrometric image		+ 0.8) K, where T – temperature. K	method
	converters, thermographs, infrared cameras	from 0 to 3000 °C	$U_{0.95} = (1.9 \cdot 10^{-3} \cdot t + 0.8)$ °C.	
			where t – temperature, °C	
41.22	Standard black body emitters, standard black	from 220 to 273 K	$U_{0.95} = (5.66 \cdot 10^{-3} \cdot T + 0.3) \text{ K},$	Comparison with comparator
	body emitters, extended black body emitters	from 0 to 3000 °C	where T – temperature, K $U_{0.95} = (1.8 \cdot 10^{-3} \cdot t + 0.01)$	Ĩ
			+ 0.6) °C, where <i>t</i> – temperature °C	
41.23	pH/pX meters and converters for laboratory	from minus 5 to 95 °C	$U_{0.95} = 0.1 ^{\circ}\mathrm{C}$	SK 03–209–6.1.2.2/01
	ionometers, redox meters			
41.24	Liquid analyzers: conductometric, salt meters, total salt content meters, signaling devices and conductometric type concentrators	from minus 5 to 95 °C	<i>U</i> _{0.95} = 0.1 °C	SK 03–2450–001–T
41.25	Installations for conductometric testing	from minus 5 to 95 °C	$U_{0.95} = 0.2 \ ^{\circ}\mathrm{C}$	SK 03–2450–001–T
42	Instruments measuring th	nermal conductivity		
42.1	Instruments measuring thermal conductivity of solids	from 0,02 to 500 W/(m K) from 90 to 1100 K	$U^{\circ}_{0.95} = 1 \%$	Direct measurement method or comparison using comparator
42.2	Working standards – ther- mal conductivity measures	from 0,02 to 500 W/(m K)	$U^{0}_{0.95} = 1 \%$	Method of direct measurements on GET 59, comparison using comparator
42.3	Instruments measuring thermal resistance	from 0.2 to 6 m ² ·K/W from 250 to 350 K	$U^{\circ}_{0.95} = 1 \%$	Direct measurement method
42.4	Instruments measuring heat transfer resistance	from 0.4 to 6.5 m ² K/W from 250 to 350 K	$U^{0}_{0.95} = 1 \%$	Direct measurement method
43	Instruments measuring th	hermal diffusivity	1	1
43.1	Instruments measuring thermal diffusivity	$\begin{array}{c} (1\cdot 10^{-7}-40\cdot 10^{-7}) \ m^2/s \\ (273.15-700) \ K \end{array}$	$U^{\circ}_{0.95} = 1 \%$	Direct measurement method

1	2	3	4	5
44	Instruments measuring su	urface density of heat flux	es	
44.1	Instruments measuring density of heat fluxes	from 2 to 100 W/m ² from 250 to 350 K	$U^{0}_{0.95} = 1 \%$	Direct measurement method
45	Instruments measuring er transformations	nergy of combustion, the a	mount of dissolution heat	t, reactions, phase
45.1	Measures of volumetric energy of combustion based on gaseous hydrocarbons or natural gas	$(3 - 11) \text{ MJ/m}^3$ (ab. 11 - 25) MJ/m ³ (ab. 25 - 50) MJ/m ³ (ab. 50 - 90) MJ/m ³	$U^{o}_{0.95} = 0.3 \%$ $U^{o}_{0.95} = 0.2 \%$ $U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 0.2 \%$	SK 03–2414–04– 2021–T Method of direct measurements on GET 16
45.2	Measures of specific combustion energy	(12638 – 45890) kJ/kg	$U^{\circ}_{0.95} = 0.013 \%$	SK 03–2414–07– 2021–T Method of direct measurements on GET 16
45.3	Measures of the amount of heat of solution and reactions based on solid and liquid substances	(5 – 50) J (ab. 50 – 1200) J	$U^{ m o}_{0.95} = 0.15~\%$ $U^{ m o}_{0.95} = 0.07~\%$	SK 03–2414–08– 2021–T Method of direct measurements on GET 133
45.4	Combustion bomb calorimeters	(2 – 8) kJ (ab. 8 – 40) kJ	$U^{\circ}_{0.95} = 0.15 \%$ $U^{\circ}_{0.95} = 0.05 \%$	SK 03–2414–05– 2020–T Direct measurement method using GSO and working standards
45.5	Calorimeters, instruments, gas analyzers for natural gas, high and low calorific gases, Wobbe numbers	$(3-11) MJ/m^3$ (ab. 11 - 25) MJ/m ³ (ab. 25 - 50) MJ/m ³ (ab. 50 - 90) MJ/m ³	$U^{o}_{0.95} = 0.6 \%$ $U^{o}_{0.95} = 0.4 \%$ $U^{o}_{0.95} = 0.2 \%$ $U^{o}_{0.95} = 0.4 \%$	SK 03–2414–06– 2021–T Method of direct measurements using CRMs and working standards
45.6	Instruments measuring amount of heat of dissolution, reactions, phase transformations	(5 – 50) J (ab. 50 – 1200) J	$U^{\circ}_{0.95} = 0.3 \%$ $U^{\circ}_{0.95} = 0.07 \%$	SK 03–2414–09– 2021–T Method of direct measurements using CRMs and working standards
46	Instruments measuring te	emperature coefficient of l	inear expansion (TCLE)	
46.1	Secondary standards for the unit of temperature coefficient of linear expansion of solids, dilatometers and measures	TCLE in temperature range from 90 to 400 K: $\pm (0.01 \cdot 10^{-6} - 0.5 \cdot 10^{-6}) K^{-1}$ $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) K^{-1}$ $\pm (5 \cdot 10^{-6} - 27 \cdot 10^{-6}) K^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) K^{-1}$ $\pm (40 \cdot 10^{-6} - 100 \cdot 10^{-6}) K^{-1}$ Temperature range from 400 to 1800 K: $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) K^{-1}$ $\pm (5 \cdot 10^{-6} - 10 \cdot 10^{-6}) K^{-1}$ $\pm (10 \cdot 10^{-6} - 27 \cdot 10^{-6}) K^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) K^{-1}$	$U_{0.95} = 0.12 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 0.39 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 0.45 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 1.65 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 3.2 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 2.2 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 3.1 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 3.1 \cdot 10^{-8} \text{ K}^{-1}$	Direct measurement method

1	2	3	4	5
		Temperature range from 1800 to 3000 K: $\pm (3 \cdot 10^{-6} - 10 \cdot 10^{-6}) K^{-1}$ $\pm (10 \cdot 10^{-6} - 17 \cdot 10^{-6}) K^{-1}$ $\pm (17 \cdot 10^{-6} - 27 \cdot 10^{-6}) K^{-1}$ $\pm (27 \cdot 10^{-6} - 50 \cdot 10^{-6}) K^{-1}$ $\pm (50 \cdot 10^{-6} - 100 \cdot 10^{-6}) K^{-1}$	$U_{0.95} = 3 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 7 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 12 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 32 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 76 \cdot 10^{-8} \text{ K}^{-1}$	
46.2	Working standards for the unit of temperature coefficient of linear expansion of solids	TCLE in temperature range from 90 to 400 K: $\pm (0.05 \cdot 10^{-6} - 0.5 \cdot 10^{-6}) K^{-1}$ $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) K^{-1}$ $\pm (5 \cdot 10^{-6} - 27 \cdot 10^{-6}) K^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) K^{-1}$ $\pm (40 \cdot 10^{-6} - 100 \cdot 10^{-6}) K^{-1}$	$U_{0.95} = 1 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 2 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 2.7 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 3.4 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 4 \cdot 10^{-7} \text{ K}^{-1}$	Direct measurement method
		Temperature range from 400 – 1900 K: $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (5 \cdot 10^{-6} - 10 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (10 \cdot 10^{-6} - 16 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (16 \cdot 10^{-6} - 27 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (40 \cdot 10^{-6} - 100 \cdot 10^{-6}) \text{ K}^{-1}$ Temperature range:	$U_{0.95} = 3 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 3.8 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 5.5 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 6.2 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 6.8 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 7.6 \cdot 10^{-7} \text{ K}^{-1}$	
		from 1900 to 3000 K $\pm (3 \cdot 10^{-6} - 17 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (17 \cdot 10^{-6} - 30 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (30 \cdot 10^{-6} - 100 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 7.6 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 1.5 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 2.2 \cdot 10^{-7} \text{ K}^{-1}$	
46.3	Measures of temperature coefficient of linear expansion (TCLE measures)	TCLE in temperature range from 90 to 400 K: $\pm (0.01 \cdot 10^{-6} - 0.5 \cdot 10^{-6}) \text{K}^{-1}$ $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \text{K}^{-1}$ $\pm (5 \cdot 10^{-6} - 27 \cdot 10^{-6}) \text{K}^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \text{K}^{-1}$ $\pm (40 \cdot 10^{-6} - 100 \cdot 10^{-6}) \text{K}^{-1}$ Temperature range from 400 to 1800 K.	$U_{0.95} = 0.12 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 0.39 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 0.45 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 1.65 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 3.2 \cdot 10^{-8} \text{ K}^{-1}$	Direct measurement method
		from 400 to 1800 K: $\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (5 \cdot 10^{-6} - 10 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (10 \cdot 10^{-6} - 27 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \text{ K}^{-1}$ $\pm (40 \cdot 10^{-6} - 100 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.73 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 2.2 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 3.1 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 12.8 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 14.2 \cdot 10^{-8} \text{ K}^{-1}$	
		$\begin{array}{c} Temperature range \\ from 1800 to 3000 K: \\ \pm (3 \cdot 10^{-6} - 10 \cdot 10^{-6}) K^{-1} \\ \pm (10 \cdot 10^{-6} - 17 \cdot 10^{-6}) K^{-1} \\ \pm (17 \cdot 10^{-6} - 27 \cdot 10^{-6}) K^{-1} \\ \pm (27 \cdot 10^{-6} - 50 \cdot 10^{-6}) K^{-1} \\ \pm (50 \cdot 10^{-6} - 100 \cdot 10^{-6}) K^{-1} \end{array}$	$U_{0.95} = 3 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 7 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 12 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 32 \cdot 10^{-8} \text{ K}^{-1}$ $U_{0.95} = 76 \cdot 10^{-8} \text{ K}^{-1}$	

1	2	3	4	5
46.4	Interference, comparator,	TCLE in temperature		Direct measurement
	optical and pusher	range		method
	dilatometers	from 90 to 400 K:	$U_{0.95} = 0.1 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (0.05 \cdot 10^{-6} - 0.5 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.12 \cdot 10^{-7} \text{ K}^{-1}$	
		1	$U_{0.95} = 0.17 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.24 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (5 \cdot 10^{-6} - 27 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.30 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \text{ K}^{-1}$		
		$\pm (40.10^{-6} - 100.10^{-6}) \text{ K}^{-1}$		
		Temperature range		
		from 400 to 1900 K:		
		$\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.5 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (5 \cdot 10^{-6} - 10 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.8 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (10.10^{-6} - 16.10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 1 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (16 \cdot 10^{-6} - 27 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 1.4 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 2 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (40.10^{-6} - 100.10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 2.5 \cdot 10^{-7} \text{ K}^{-1}$	
		Temperature range		
		from 1900 to 3000 K:		
		$\pm (3.10^{-6} - 10.10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 0.5 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (10.10^{-6} - 17.10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 2 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (17 \cdot 10^{-6} - 30 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 4 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (30.10^{-6} - 100.10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 8 \cdot 10^{-7} \text{ K}^{-1}$	
47	Measuring instruments for	or complex analysis of the	rmomechanical quantities	
47.1	Instruments for complex	Temperature		Direct measurement
	thermomechanical	from 90 to 400 K	$U_{0.95} = 0.2 \text{ K}$	method
	analysis of materials	ab. 400 to 600 K	$U_{0.95} = 0.5 \text{ K}$	
		ab. 600 to 850 K	$U_{0.95} = 1 \text{ K}$	
		ab. 850 to 1000 K	$U_{0.95} = 2 \mathrm{K}$	
		ab. 1000 to 1500 K	$U_{0.95} = 4 \text{ K}$	
		ab. 1500 to 3000 K	$U_{0.95} = 9 \text{ K}$	
		Specific elongation		
		± 0.3	$U_{0.95} = 0.3 \cdot 10^{-3}$	
		L inear increment		
		$(0.02 \cdot 10^{-3} - 0.8) \text{ mm}$	$U_{0.05} - 4 \cdot 10^{-6} \mathrm{mm}$	
		(0.02 10 0.0) IIIII	00.95 - + 10 mm	
		TCLE in temperature		
		range from 90 to 400 K:		
		$\pm (0.05 \cdot 10^{-6} - 0.5 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 0.2 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (0.5 \cdot 10^{-6} - 10 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 0.3 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (10.10^{-6} - 27.10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 0.34 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (27 \cdot 10^{-6} - 100 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 0.42 \cdot 10^{-7} \text{ K}^{-1}$	
		Temperature range		
		from 400 to 1900 K:		
		$\pm (0.5 \cdot 10^{-6} - 5 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 0.5 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (5 \cdot 10^{-6} - 16 \cdot 10^{-6}) \text{ K}^{-1}$	$U_{0.95} = 1.2 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (16 \cdot 10^{-6} - 27 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 1.8 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (27 \cdot 10^{-6} - 40 \cdot 10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 2.5 \cdot 10^{-7} \text{ K}^{-1}$	
		$\pm (40.10^{-6} - 100.10^{-6}) \mathrm{K}^{-1}$	$U_{0.95} = 3 \cdot 10^{-7} \text{ K}^{-1}$	

1	2	3	4	5
		$\begin{array}{c} Temperature range \\ from 1900 to 3000 K: \\ \pm (3 \cdot 10^{-6} - 10 \cdot 10^{-6}) K^{-1} \\ \pm (10 \cdot 10^{-6} - 17 \cdot 10^{-6}) K^{-1} \\ \pm (17 \cdot 10^{-6} - 30 \cdot 10^{-6}) K^{-1} \\ \pm (30 \cdot 10^{-6} - 100 \cdot 10^{-6}) K^{-1} \end{array}$	$U_{0.95} = 0.7 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 2.1 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 4.5 \cdot 10^{-7} \text{ K}^{-1}$ $U_{0.95} = 10 \cdot 10^{-7} \text{ K}^{-1}$	
		$\begin{array}{c} \mbox{Modulus of elasticity} \\ \mbox{from } 10^{-3} \mbox{ to } 0.1 \mbox{ Pa} \\ \mbox{ ab. } 0.1 \mbox{ to } 10^2 \mbox{ Pa} \\ \mbox{ ab. } 10^2 \mbox{ to } 10^5 \mbox{ Pa} \\ \mbox{ ab. } 10^5 \mbox{ to } 10^9 \mbox{ Pa} \\ \mbox{ ab. } 10^9 \mbox{ to } 10^{16} \mbox{ Pa} \end{array}$	$U_{0.95} = 5 \cdot 10^{-5} \text{ Pa}$ $U_{0.95} = 5 \cdot 10^{-3} \text{ Pa}$ $U_{0.95} = 0.1 \text{ Pa}$ $U_{0.95} = 1 \cdot 10^{3} \text{ Pa}$ $U_{0.95} = 5 \cdot 10^{4} \text{ Pa}$	
		Mechanical loss angle tangent (0.00005 - 100)	$U^{0}_{0.95} = 3 \%$	
		Force from 10^{-4} to 10^{-2} N ab. 10^{-2} to 0.1 N ab. 0.1 to $5 \cdot 10^{6}$ N	$U^{0}_{0.95} = 5 \%$ $U^{0}_{0.95} = 3 \%$ $U^{0}_{0.95} = 1 \%$	
		$\begin{array}{c} Mass \\ from 1 \cdot 10^{-3} \text{ to } 1 \cdot 10^2 \text{ g} \\ ab. 1 \cdot 10^2 \text{ to } 1 \cdot 10^3 \text{ g} \end{array}$	$U^{0}_{0.95} = 3 \%$ $U^{0}_{0.95} = 1 \%$	
		Frequency of mechanical vibrations (1 – 200) Hz	$U^{0}_{0.95} = 3 \%$	
48	Instruments measuring s phase and structural tran	specific heat capacity, spe	cific enthalpy, amount of	f heat, specific heat of
48.1	Standard (reference) instruments measuring specific heat capacity of solids, specific heat	(465 – 1654) J/(kg K) in temperature range (273.15 – 700) K	$U^{\circ}_{0.95} = 0.1$ %	Direct measurement method Comparison with a
48.2	Instruments for combined thermal analysis, thermal	Temperature (273 – 700) K	$U^{0}_{0.95} = 2 \%$	Direct measurement method
	analyzers, synchronous thermogravimeters, instruments for	Amount of heat $(0 - 1200)$ J	$U^{0}_{0.95} = 2$ %	
	thermogravimetric and differential thermal analysis	Specific heat of phase and structural transformations (10 – 1000) kJ/kg	$U^{0}_{0.95} = 2 \%$	
		Specific heat (250 – 1654) J/(kg K)	$U^{0}_{0.95} = 3 \%$	
10.0		Mass 10 mg to 5 g	$U^{\circ}_{0.95} = 3 \%$	D'
48.3	Differential scanning calorimeters	Temperature (273 – 700) K	$U^{0}_{0.95} = 1 \%$	Direct measurement method
		Amount of heat $(0 - 1200)$ J	$U^{\circ}_{0.95} = 2 \%$	
		Specific heat of phase and structural transformations (10 – 1000) kJ/kg	$U^{ m o}_{0.95} = 2 \%$	
		Specific heat (250 – 1654) kJ/(kg K)	$U^{0}_{0.95} = 2.5 \%$	

1	2	3	4	5
TIME	AND FWSQUENCY MEA	ASUREMENTS		
49	Instruments measuring ti	me and frequency		
49.1	Electronic frequency counters, frequency synthesizers, frequency comparators	(1·10 ⁻² – 50·10 ⁶) Hz	$U_{0.95} = 0.003 \text{ Hz}$	Direct measurement method
ELEC	TRICAL AND MAGNETI	C MEASUREMENTS		
50	Instruments measuring E	MF and DC voltage		
50.1	DC voltage sources and meters	(10 ⁻⁶ –10 ³) V	$U = (10^{-1} - 2 \cdot 10^{-4}) \%,$ matrix 1.1	Comparisons using comparator. Direct measurement method
51	Instruments measuring d	irect current		
51.1	Sources and meters of di- rect current	(1·10 ⁻¹⁶ – 30) A	$U^{\circ}_{0.95} = (5 - 0.001) \%$ matrix 2.1	Method of indirect measurements. Comparisons using comparator. Direct measurement method
52	Instruments measuring A	C voltage	-	
52.1	Thermoelectric voltage converters	100 mV – 1000 V 10 Hz – 30 MHz	$U_{0.95} = (10 - 1000) \mu\text{V/V}$ matrix 3.1	Direct comparison method with GET reference transducers
52.2	Calibrators	100 mV – 1000 V 10 Hz – 1 MHz	$U_{0.95} = 25 \cdot \mu V/V20 mV/V$ matrix 3.2	Method of direct measurements on GET
52.3	Voltmeters	100 mV – 1000 V 10 Hz – 2000 MHz	$U_{0.95} = 25 \cdot \mu V/V72 \mu V/V$ matrix 3.3	Depending on the frequency range: – Method of direct measurements on GET; – Comparison using comparator on GET
53	Instruments measuring A	C current	1	1.
53.1	Converters, calibrators, ammeters	$(10^{-3} - 25) \text{ A}$ $(20 - 10^{6}) \text{ Hz}$	U _{0.95} = (15– 260)μA/A Matrix 4.1	Depending on the frequency range: – Method of direct measurements on GET; – Direct comparison method
53.2	AC shunts	1 mA – 100 A 10 Hz – 100 kHz	$U_{0.95} = (15 - 350)\mu A/A$ matrix 4.2	Direct comparison method
54	Instruments measuring an	mount of electricity and c	harges	1
54.1	Electrostatic charge meters, universal electrometric voltmeters, electrometers	$(5 \cdot 10^{-12} - 2 \cdot 10^{-5}) \text{ C}$	$U^{o}_{0.95} = 2 \%$	Method of indirect measurements.
54.2	Electric charge surface density meters	$(0.2 \cdot 10^{-5} - 1 \cdot 10^{-5}) \text{ C/m}^2$	$U^{0}_{0.95} = 5 \%$	Method of indirect measurements.
55	Instruments measuring pa	arameters of electrostatic	field	
55.1	Electrostatic field strength meters	to $1 \cdot 10^6 \text{V/m}$	$U^{0}_{0.95} = 1.2\%$	Method of indirect measurements

1	2	3	4	5
55.2	Electrostatic field poten-	to 3·10 ⁴ V	$U^{ m o}{}_{0.95}=0.4$ %	Method of indirect
56	Instruments measuring of	 aatriaal rasistanaa Instru	monte moosuring alactri	
50	Secondorry (working)	(10-4 10-5) O	$\frac{1}{10} = 2 \cdot 10^{-4} \text{ or}$	
56.1	secondary (working)	$(10^{-1} - 10^{-3})\Omega$	$U^{\circ}_{0.95} = 2 \cdot 10^{-4} \%$	Using comparator
	DC resistance	$(10^{-3} - 1) \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	Method of direct meas-
		$(1-10^{5}) \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-5} \%$	urements. Method of
		$(10^{5} - 10^{6}) \Omega$	$U^{\circ}_{0.95} = 4 \cdot 10^{-5} \%$	indirect measurements.
		$(10^6 - 10^8) \Omega$	$U^{0}_{0.95} = 8 \cdot 10^{-5} \%$	Comparison method
		$(10^8 - 10^9) \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	
		$(10^9 - 10^{12}) \Omega$	$U^{\rm o}_{0.95} = 0.01 ~\%$	
56.2	Single value resistance	$(10^{-6} - 10^{-4}) \Omega$	$U^{\rm o}_{0.95} = 4 \cdot 10^{-4} \%$	Comparison method
	standards	$(10^{-4} - 10^{-3}) \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	using comparator.
	Multivalue resistance	$(10^{-3} - 1) \Omega$	$U^{0}_{0.95} = 1.10^{-5} \%$	urements Method of
	standards	$(1 - 10^5) \Omega$	$U^{0}_{0.95} = 5 \cdot 10^{-5} \%$	indirect measurements.
		$(10^5 - 10^6) \Omega$	$U^{0}_{0.95} = 8 \cdot 10^{-5} \%$	Comparison method.
	Calibrators of resistance	$(10^6 - 10^8) \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	Element by elements
		$(10^8 - 10^9) \Omega$	$U^{\rm o}_{0.95} = 0.001$ %	check Method
		$(10^9 - 10^{12}) \Omega$	$U^{0}_{0.95} = 0.01 \%$	_
		$(10^{12} - 10^{13}) \Omega$	$U^{0}_{0.95} = 0.05 \%$	-
		$(10^{13} - 10^{14}) \Omega$	$U^{0}_{0.95} = 0.1 \%$	-
		$(10^{14} - 10^{15}) \Omega$	$U^{0}_{0.95} = 0.01 \%$	
56.3	Resistance meters	$(10^{-6} - 10^{-3}) \Omega$	$U^{0}_{0.95} = 0.5 \%$	Method of direct
		$(10^{-3} - 1) \Omega$	$U^{0}_{0.95} = 0.05 \%$	measurements.
		$(1-10) \Omega$	$U^{0}_{0.95} = 0.01 \%$	- Comparison method
		$(10-10^6) \Omega$	$U^{\rm o}_{0.95} = 0.005 \%$	-
		$(10^6 - 10^7) \Omega$	$U^{\rm o}_{0.95} = 0.01 \ \%$	-
		$(10^7 - 10^9) \Omega$	$U^{\rm o}_{0.95} = 0.05 \ \%$	-
		$(10^9 - 10^{12}) \Omega$	$U^{\rm o}{}_{0.95} = 0.08$ %	-
		$(10^{12} - 10^{13}) \Omega$	$U^{\rm o}_{0.95} = 0.1$ %	_
		$(10^{13} - 10^{14}) \Omega$	$U^{0}_{0.95} = 0.8 \%$	-
		$(10^{14} - 10^{15}) \Omega$	$U^{0}_{0.95} = 1 \%$	-
	Resistance meters of	$(10^{-6} - 200) \Omega$	$U^{0}_{0.95} = 0.2 \%$	_
	windings			
56.4	DC and AC shunts	1 μΩ	$U^{\rm o}_{0.95} = 0.3$ %	Method of direct
		from 10 $\mu\Omega$ to 100 $\mu\Omega$	$U^{\rm o}_{0.95} = 0.1$ %	measurements.
		from 1 m Ω to 1 k Ω 1 mA – 15 kA	$U^{ m o}{}_{0.95}=0.01~\%$	using comparator
56.5	Secondary (working) standards for the unit of AC resistance	$ \begin{array}{c} 1 \text{ m}\Omega - 10 \text{ m}\Omega \\ 10 \text{ m}\Omega - 100 \text{ m}\Omega \\ 1 \Omega - 10 \text{ k}\Omega \\ 100 \text{ k}\Omega - 1 \text{ M}\Omega \\ 10 \text{ M}\Omega - 100 \text{ M}\Omega \\ \text{ to 1 kHz} \\ 1 \text{ m}\Omega - 10 \text{ m}\Omega \\ 10 \text{ m}\Omega - 100 \text{ m}\Omega \end{array} $	$U^{0}_{0.95} = 0.01 \%$ $U^{0}_{0.95} = 1 \cdot 10^{-3} \%$ $U^{0}_{0.95} = 1 \cdot 10^{-4} \%$ $U^{0}_{0.95} = 3 \cdot 10^{-3} \%$ $U^{0}_{0.95} = 5 \cdot 10^{-3} \%$ $U^{0}_{0.95} = 0.01 \%$ $U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	Method of direct measurements. Comparison method using comparator. Method of indirect measurements
		$100 \text{ m}\Omega - 100 \text{ m}\Omega$ $100 \text{ m}\Omega - 10 \Omega$	$U^{\circ}_{0.95} = 5 \cdot 10^{-3} \%$ $U^{\circ}_{0.95} = 5 \cdot 10^{-3} \%$	

1	2	3	4	5
		$100 \ \Omega - 10 \ k\Omega$	$U^{0}_{0.95} = 3 \cdot 10^{-3} \%$	
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{\circ}_{0.95} = 5 \cdot 10^{-3} \%$	
		$10 \text{ M}\Omega - 100 \text{ M}\Omega$	$U^{0}_{0.95} = 0.01 \%$	
		to 100 kHz		-
		$100 \text{ m}\Omega - 10 \Omega$	$U^{0}_{0.95} = 0.02 \%$	
		$10 \Omega - 10 k\Omega$	$U^{0}_{0.95} = 0.01 \%$	
		$t_{0} 10 \text{ MHz}$	0.95 - 0.0270	
56.6	AC resistance standards	1 mO = 10 mO	$U_{0,05}^{0} = 0.01.\%$	Method of direct
50.0	The resistance standards	$10 \text{ m}\Omega - 100 \text{ m}\Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-3} \%$	measurements.
		$1 \Omega - 10 k\Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	Comparison method
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{\circ}_{0.95} = 3 \cdot 10^{-3} \%$	using comparator
		$10 \text{ M}\Omega - 100 \text{ M}\Omega$	$U^{\circ}_{0.95} = 5 \cdot 10^{-3} \%$	
		to 1 kHz		-
		$1 \text{ m}\Omega - 10 \text{ m}\Omega$	$U^{0}_{0.95} = 0.01\%$	
		$10 \text{ m}\Omega = 100 \text{ m}\Omega 2$	$U^{\circ}_{0.95} = 5 \cdot 10^{-3} \%$	
		100 MS2 = 10 S2 $100 \Omega - 10 \text{ k}\Omega$	$U^{0}_{0.95} = 3 \cdot 10^{-3} \%$	
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	
		$10 \text{ M}\Omega - 100 \text{ M}\Omega$	$U^{\rm o}_{0.95} = 0.01$ %	
		to 100 kHz		_
		$100 \text{ m}\Omega - 10 \Omega$	$U^{ m o}_{0.95}=0.02~\%$	
		$10 \Omega - 10 k\Omega$	$U^{0}_{0.95} = 0.01 \%$	
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{\circ}_{0.95} = 0.02 \%$	
567	Multivalue AC registeres	10 mQ 100 mQ	$U^{0} = -1 \cdot 10^{-3} 0/$	Mathad of direct
50.7	standards	$10 \text{ ms}_2 = 100 \text{ ms}_2$ $1 \Omega - 10 \text{ k}\Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	measurements.
	5 111 1 11	$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{\circ}_{0.95} = 3 \cdot 10^{-3} \%$	Comparison method
	AC Resistance Calibrators	$10 \text{ M}\Omega - 100 \text{ M}\Omega$	$U^{\rm o}_{0.95} = 5 \cdot 10^{-3} \%$	using comparator
		to 1 kHz		
		$10 \text{ m}\Omega - 100 \text{ m}\Omega$	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	
		$100 \text{ m}\Omega - 10 \Omega$	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	
		$100 \Omega - 10 k\Omega$	$U^{\circ}_{0.95} = 3 \cdot 10^{-3} \%$	
		10 MO - 100 MO	$U_{0.95}^{\circ} = 0.01\%$	
		to 100 kHz		
		$100 \text{ m}\Omega - 10 \Omega$	$U^{0}_{0.95} = 0.02 \%$	-
		$10 \ \Omega - 10 \ k\Omega$	$U^{0}_{0.95} = 0.01 \%$	
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{ m o}_{0.95}=0.02~\%$	
		to 10 MHz		
56.8	Single value conductivity	$(1 - 10^{-4})$ S	$U^{0}_{0.95} = 0.002 \ \%$	Method of direct
	standards Multivalue conductivity	(10 ⁻⁴ – 10 ⁻⁶) S	$U^{\rm o}_{0.95} = 0.005 ~\%$	measurements.
	standards	$(10^{-6} - 10^{-8})$ S	$U^{0}_{0.95} = 0.01 \%$	comparison method using
	Standards	50 Hz – 100 kHz		indirect measurements
56.9	AC Bridges, R	$1 \text{ m}\Omega - 10 \text{ m}\Omega$	$U^{\rm o}_{0.95} = 0.01$ %	Method of direct
	Immittance Meters	$10 \text{ m}\Omega - 100 \text{ m}\Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-3} \%$	measurements. Method
	Total resistance and total	$100 \text{ m}\Omega - 1 \Omega$	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	of indirect
		$1 \Omega - 10 k\Omega$	$U^{0}_{0.95} = 5 \cdot 10^{-5} \%$	
		$10 \text{ k}\Omega - 100 \text{ k}\Omega$	$U^{\rm o}_{0.95} = 1 \cdot 10^{-4} \%$]
		$100 \text{ k}\Omega - 1 \text{ M}\Omega$	$U^{0}_{0.95} = 3 \cdot 10^{-3} \%$]
		10 ΜΩ – 100 ΜΩ	$U^{\rm o}_{0.95} = 5 \cdot 10^{-3} \%$	

1	2	3	4	5
57	Instruments measuring e	lectric capacitance		
57 57.1	Instruments measuring e Secondary (working) standards for the unit of electric capacitance	lectric capacitance 1 fF -10 fF 10 fF - 1 pF 1 pF - 100 pF 100 pF - 100 nF 100 nF - 10 uF 100 nF - 10 uF 10 uF - 1 mF 1 mF - 100 mF 100 mF - 1 F 100 mF - 1 F 100 mF - 1 pF 1 nF - 10 fF 10 nF - 1 nF 1 nF - 100 nF 100 nF - 1 0 uF 100 nF - 1 0 uF 1 nF - 100 nF 1 nF - 10 fF 1 nF - 10 fF 1 nF - 10 fF 1 nF - 10 nF 1 nF - 100 nF	$U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 5 \cdot 10^{-4} \%$ $U^{o}_{0.95} = 5 \cdot 10^{-5} \%$ $U^{o}_{0.95} = 0.001 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.03 \%$ $U^{o}_{0.95} = 0.3 \%$ $U^{o}_{0.95} = 0.005 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.005 \%$	Method of direct measurements. Comparison method using comparator
57.2	Electrical capacitance standards, capacitance boxes and measuring capacitors:	from 10 kHz to 1 MHz 1 fF -10 fF 10 fF - 1 pF 1 pF - 10 pF 10 pF - 100 nF 100 nF - 10 uF 100 nF - 1 0 uF 100 mF - 1 mF 1 mF - 100 mF 100 mF - 1 F to 1 kHz 1 fF - 10 fF 1 pF - 1 nF 1 nF - 100 nF 100 nF - 1 0 uF to 10 kHz 1 fF - 10 fF 1 0 fF - 1 pF 1 pF - 1 nF 1 nF - 100 nF from 1 0 kHz to 1 MHz 1 pF - 1 nF from 1 MHz to 30 MHz	$U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.005 \%$ $U^{o}_{0.95} = 0.03 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.5 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 5 \cdot 10^{-5} \%$ $U^{o}_{0.95} = 5 \cdot 10^{-5} \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.01 \%$	Electrical capacitance standards, capacitance boxes and measuring capacitors
	Small capacity standards High frequency capacitance standards	1 fF -10 fF 10 fF - 1 pF 1 pF - 10 pF 1 kHz (100 - 1000) pF 1 MHz	$U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 5 \cdot 10^{-5} \%$ $U^{o}_{0.95} = 0.02 \%$	
	High capacity standards	100 uF – 1 mF 1 mF – 100 mF 100 mF – 1 F 50 Hz – 1 kHz	$U^{\circ}_{0.95} = 0.03 \%$ $U^{\circ}_{0.95} = 0.05 \%$ $U^{\circ}_{0.95} = 0.5 \%$	

1	2	3	4	5
57.3	AC bridges, capacitance	1 fF –10 fF	$U^{\rm o}{}_{0.95} = 0.1$ %	Method of direct
	meters for immittance	10 fF – 1 pF	$U^{\rm o}_{0.95} = 0.01$ %	measurements.
	parameters	1 pF – 10 pF	$U^{0}_{0.95} = 5 \cdot 10^{-4} \%$	Comparison method
		10 pF – 100 nF	$U^{ m o}_{0.95}=0.005~\%$	using comparator
		100 nF – 10 uF	$U^{ m o}_{0.95}=0.01~\%$	
		100 uF - 1 mF	$U^{ m o}{}_{0.95}=0.03~\%$	
		1 mF - 100 mF	$U^{ m o}{}_{0.95}=0.05~\%$	
		100 mF – 1 F	$U^{ m o}{}_{0.95}=0.5~\%$	
		to 1 kHz		
		1 fF –10 fF	$U^{\rm o}{}_{0.95} = 0.1$ %	
		10 fF – 1 pF	$U^{ m o}_{0.95}=0.01~\%$	
		1 pF – 1 nF	$U^{\circ}_{0.95} = 5 \cdot 10^{-4} \%$	
		1 nF – 100 nF	$U^{ m o}_{0.95}=0.005~\%$	
		100 nF - 10 uF	$U^{\circ}_{0.95} = 0.01 \ \%$	
		to 10 kHz		
		1 fF –10 fF	$U^{ m o}{}_{0.95}=0.1~\%$	
		10 fF – 1 pF	$U^{0}_{0.95} = 0.05 \%$	
		1 pF – 1 nF	$U^{ m o}_{0.95}{=}0.005~\%$	
		1 nF - 100 nF	$U^{0}_{0.95} = 0.01 \%$	
		from 10 kHz to 1 MHz	$U^{\circ}_{0.95} = 0.01 \%$	
		1 pF – 1 nF	$U^{0}_{0.95} = 0.01 \%$	
		from 1 MHz to		
		30 MHz		
57.4	Calibrators of electrical	1 fF –10 fF	$U^{0}_{0.95} = 0.1 \%$	Method of direct
	capacitance	10 fF – 1 pF	$U^{0}_{0.95} = 0.01$ %	measurements.
		1 pF – 10 pF	$U^{0}_{0.95} = 1 \cdot 10^{-4} \%$	Comparison method
		10 pF – 100 nF	$U^{ m o}_{0.95}=0.005~\%$	using comparator
		100 nF – 10 uF	$U^{0}_{0.95} = 0.01 \%$	
		100 uF - 1 mF	$U^{0}_{0.95} = 0.03 \%$	
		1 mF - 100 mF	$U^{0}_{0.95} = 0.05 \%$	
		100 mF - 1 F	$U^{0}_{0.95} = 0.5 \%$	
		to 1 kHz		
		1 fF –10 fF	$U^{0}_{0.95} = 0.1$ %	
		10 fF - 1 pF	$U^{0}_{0.95} = 0.01 \%$	
		1 pF - 1 nF	$U_{0.95}^{\circ} = 1.10^{-4} \%$	
		1 nF - 100 nF	$U^{\circ}_{0.95} = 0.005 \%$	
		100 nF - 10 uF	$U^{\circ}_{0.95} = 0.01 \%$	
			TTD D d d d	
		1 fF - 10 fF	$U^{0}_{0.95} = 0.1 \%$	
		10 fF - 1 pF	$U^{0}_{0.95} = 0.05\%$	
		I pF - I nF	$U^{0}_{0.95} = 0.005 \%$	
		1 nF - 100 nF	$U^{\circ}_{0.95} = 0.01\%$	
		IFOM 10 KH2 to 1 MH2	$U_{0.95}^{*} = 0.01\%$	
		1 pF - 1 nF	$U^{0}_{0.95} = 0.01 \%$	
		from 1 MHz to 30 MHz		
58	Instruments measuring in	nductance	Γ	ſ
58.1	Secondary (working)	10 nH – 10 µH	$U^{\rm o}_{0.95} = 0.1$ %	Method of direct
	standards for the unit of	10 μH – 100 μH	$U^{\rm o}_{0.95} = 0.05$ %	measurements.
	inductance	100 μH – 1mH	$U^{\circ}_{0.95} = 0.01 \%$	Comparison method
		1 mH – 100 mH	$U^{0}_{0.95} = 0.001 \%$	using comparator
		100 mH - 10 H	$U_{0.05}^{0} - 0.01\%$	
		10 H - 1 KH	$U^{-}_{0.95} = 0.02 \%$	

1	2	3	4	5
58.2	Inductance standards, inductance boxes AC Bridges, L Immittance Meters Inductance meters, inductance calibrators	10 nH - 10 μ H 10 μ H - 100 μ H 100 μ H - 1 mH 1 mH - 100 mH 100 mH - 10 H 100 mH - 10 H 10 H - 1 kH 1 kH - 10 kH to 1 kHz 10 nH - 10 μ H 10 μ H - 10 H ab. 1 kHz to 1 MHz 10 nH - 10 μ H 10 μ H - 10 μ H 10 μ H - 10 μ H	$U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.001 \%$ $U^{o}_{0.95} = 0.02 \%$ $U^{o}_{0.95} = 0.02 \%$ $U^{o}_{0.95} = 0.05 \%$ $U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 0.3 \%$ $U^{o}_{0.95} = 0.2 \%$ $U^{o}_{0.95} = 0.2 \%$	Method of direct measurements. Comparison method using comparator
58.3	Working standards for the unit of mutual inductance, mutual inductance boxes	ab. 1 MHz to 100 MHz 0.1 mH ; 1 mH ; 10 mH 1 μH – 10 mH to 50 kHz	$U^{ m o}_{0.95}=0.01~\%\ U^{ m o}_{0.95}=0.05~\%$	Method of direct measurements. Comparison method using comparator
59	Instruments measuring d	ielectric loss angle (dielect	tric loss tangent)	
59.1	Secondary (working) standards for the loss tangent unit	$D = 0,5 \cdot 10^{-5} - 1$ at $C = 10 \text{ pF} - 10 \text{ \mu F}$ to 1 MHz	$U_{0.95} = (0.3 \cdot 10^{-5} + 0.001 \cdot D),$ where $D - loss$ angle value	Method of direct measurements. Comparison method using comparator
59.2	Single and multiple value loss tangent standards	$10^{-5} - 1$ at $C = 1\text{pF} - 100 \text{ mF}$ to 10 MHz	$U_{0.95} = (10^{-5} + 0.001 \cdot D),$ where D - loss angle value	Method of direct measurements. Comparison method using comparator
59.3	AC bridges, loss tangent immitance meters Loss tangent meters	from $1 \cdot 10^{-5}$ to $1 \cdot 10^{-4}$ from $2 \cdot 10^{-4}$ to 1 to 10 MHz $(1 \cdot 10^{-4} - 1)$ at $C = 1 \text{ pF} - 10 \mu\text{F}$	$U_{0.95} = 1 \cdot 10^{-5}$ $U_{0.95} = 1 \cdot 10^{-4}$ $U_{0.95} = 0.005 \cdot D,$ where <i>D</i> - loss angle	Direct measurement method
60	Instruments measuring el	ectrical quality factor	value	
60.1	Q measures, Q meters, AC bridges, Q immitance meters	from 1 to 2 from 2 to 5 from 10 to 100 from 100 to 600 (0.05 – 30) MHz	$U^{\circ}_{0.95} = 1 \%$ $U^{\circ}_{0.95} = 0.5 \%$ $U^{\circ}_{0.95} = 0.2 \%$ $U^{\circ}_{0.95} = 1.5 \%$	Method of direct measurements. Comparison method using comparator. Method of indirect measurements
61	Instruments measuring ca	apacitance and loss tanger	nt	
61.1	High–voltage capacitive bridges, meters of insulation parameters	C = 1 pF - 10 nF C = 100 nF - 1 uF $D = 1 \cdot 10^{-5} - 1$ 50 Hz	$U^{o}_{0.95}(C) = 0.01\%$ $U^{o}_{0.95}(C) = 0.1\%$ $U_{0.95}(D) = (1 \cdot 10^{-5} + 0.005 \cdot D)$	Direct measurement method
61.2	High–voltage measuring capacitors High voltage loss tangent	from 10 to 100 pF from 1 to 10 nF from 10 pF to 10 nF to 100 kV	$U^{\circ}_{0.95} = 0.005\%$ $U^{\circ}_{0.95} = 0.05\%$ $U^{\circ}_{0.95} = 1\%$	Method of direct measurements. Comparison method using comparator

1	2	3	4	5
	standards	$D = 10^{-4} - 1$	$U_{0.95} = (1 \cdot 10^{-4} + 0.005 \cdot D)$	
		at $C = 10 \text{pF} - 0.1 \text{uF}$		
		to 100 kV		
62	Instruments measuring s	pecific electrical conducti	vity	
62.1	Electrical conductivity	(0.4 - 60) MS/m	$U^{\circ}_{0.95} = 0.5\%$	Method of indirect
	measures (metals and			measurements. Com-
	alloys)			parison method using
				comparator
62.2	Electrical Conductivity	(0.4 - 60) MS/m	$U^{0}_{0.95} = 1.5\%$	Direct measurement
	Meters			method
63	Instruments measuring r	elative permittivity		
63.1	Samples (standards) of	ε from 1 to 4	$U^{0}_{0.95} = 0.01\%$	Method of indirect
	permittivity, complex	ε from 4 to 10	$U^{0}_{0.95} = 0.1\%$	measurements
	permittivity, measuring	ε from 10 to 60	$U^{0}_{0.95} = 2\%$	
	cells	ε from 60 to 100	$U^{0}_{0.95} = 5\%$	
()	T	to 10 MHz		
04	Instruments measuring v	oltage and electrical volta	ge ratios	~
64.1	High–voltage capacitive	(6 - 100) kV	$U^{0}_{0.95} = 0.01\%$	Current comparator
	converters (HVCC)	K from 1 to 10000		method
		where K is the scaling		
(1.0	X 7 1.		TID 0.010/	
64.2	Voltage measuring	K = 1 - 1000	$U^{\circ}_{0.95} = 0.01\%$	Current comparator
	transformers	10 100 K V		method
64.3	Canacitive voltage	K - 1 - 10000	$U_{0,os}^{0} = 0.01\%$	Current comparator
04.5	dividers	r = 10000	0.95 - 0.0170	method Comparison
		10 100 KV		Method
64 4	Inductive dividers	0.01 – 10	$U_{0.05}^{0} = 1.10^{-6} \%$	Method of indirect
07.7	inductive dividers	$0.01 - 0.01 \cdot 10 - 100$	$U_{0.95}^{\circ} = 10 \cdot 10^{-6} \%$	measurements
64 5	Voltage dividers	K = (1 - 10000)		Current comparator
04.5	high voltage battery	$\mathbf{X} = (1 - 10000)$	$U^{\circ}_{0.05} = 0.01\%$	method Comparison
	gauges	(1 - 100) kV	0.95 - 0.0170	method
	5	DC voltage	$U^{0}_{0.05} = 0.01\%$	
		(1 - 130) kV	0.095 - 0.0170	
64 6	High_voltage measuring	(1 - 100) kV	$U^{\circ}_{0.05} = 0.01\%$	Current comparator
01.0	converters		0.95 - 0.0170	method. Comparison
				method
64.6	High voltage measuring	AC voltage	$U^{0}_{0.95} = 0.2\%$	Direct measurement
	systems, kilovoltmeters,	(1 - 100) kV		method
	voltage sources, devices	DC voltage	$U^{\circ}_{0.05} = 0.2\%$	
	for measuring electric	(1 - 130) kV	0.95	
	strength of insulation			
65	Instruments measuring a	mount of electricity (elect	ric charge)	
65.1	Partial discharge meters	1 pC – 10 pC	$U^{0}_{0.95} = 1 \text{ pC}$	Method of direct
	, The second sec	from 11 pC to 10 nC	$U^{0}_{0.95} = 1\%$	measurements. Method
				of indirect
				measurements.
65.2	Apparent charge	from 1 to 10 pC	$U_{0.95} = 1 \text{ pC}$	Method of direct
	calibrators	from 11 pC to $\overline{2}$ nC	$U^{\circ}_{0.95} = 1\%$	measurements. Method

1	2	3	4	5
		from 2 nC to 10 nC	$U^{\circ}_{0.95} = 5\%$	of indirect measurements.
66	Current, voltage, power r	neasuring transducers		
66.1	Secondary standards for the unit of electric power	from 300 to 1200 W at 53 Hz	$U^{\circ}_{0.95} = 14 \cdot 10^{-4} \%$	
	and standards of the 1st and 2nd classes	from 0 to 10000 W at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 20.10^{-4} \%$	Comparison with state
		from 0 to 2500 W at frequency from 1 to 2500 Hz and at PC = 1; $PC = minus 1$	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	standard GET 153
66.2	Current transformers	from 0.5 to 30000 A/ 1; 5 A at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 0.05\%$	Comparison with reference current transformer
66.3	Current transducers	from 0.01 to 200 A from 200 to 5000 A	$U^{ m o}_{0.95} = 0.01\%$ $U^{ m o}_{0.95} = 0.05~\%$	Comparison with reference current transducer
66.4	Wattmeters and varmeters	from 300 to 1200 W at 53 Hz	$U^{\circ}_{0.95} = 14 \cdot 10^{-4} \%$	
		from 0 to 10000 W at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 20.10^{-4} \%$	Comparison with CET
		from 0 to 30000 W at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	153 or with standard of the 1st class
		from 0 to 2500 W at frequency from 1 to 2500 Hz and at PC = 1; $PC = minus 1$	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	
66.5	Power transducers	from 300 to 1200 W at 53 Hz	$U^{\circ}_{0.95} = 14 \cdot 10^{-4} \%$	
		from 0 to 10000 W at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 20 \cdot 10^{-4} \%$	Companian with CET
		from 0 to 30000 W at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	153 or with standard of the 1 st accuracy class
		from 0 to 2500 W at frequency from 1 to 2500 Hz and at PC = 1; $PC = minus 1$	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	
66.6	Power coefficient (<i>PC</i>) meters	<i>PC</i> from minus 1 to 1 at frequency from 40 to 70 Hz	$U^{\circ}_{0.95} = 0.0001 \%$	Comparison with GET 153 or with standard of the 1st class
66.7	Instruments for vector measurements of electrical voltage and current	from 0 to 1000 V from 0.001 to 100 A from 40 to 70 Hz from 0° to 360°	$U_{0.95} = 3 \cdot 10^{-5}$ $U_{0.95} = 3 \cdot 10^{-5}$ $U_{0.95} = 0.00005 \text{ Hz}$ $U_{0.95} = 0.003^{\circ}$	Comparison with reference vector meter

1	2	3	4	5
67	Calibration tools for elec	trical measuring instrume	nts	
67.1	Power calibrators	from 300 to 1200 W at 53 Hz	$U^{\circ}_{0.95} = 14 \cdot 10^{-4} \%$	
		from 0 to 10000 W at frequencies from 40 to 70 Hz	$U^{\circ}_{0.95} = 20 \cdot 10^{-4} \%$	- Comparison with GET
		from 0 to 30000 W at frequencies from 40 to 70 Hz	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	153 or with standard of the 1st class
		from 0 to 2500 W at frequencies from 1 to 2500 Hz and at PC = 1; $PC = -1$	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	
67.2	Installations for verification of multifunctional electric power measuring	from 0 to 50 A at voltages from 0 to 1000 V and at frequencies 40 to 70 Hz	$U^{\circ}_{0.95} = 3.10^{-3} \%$	
	Instruments	from 50 to 200 A at voltage from 0 to 1000 V and at frequencies from 40 to 70 Hz	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	Comparison with GET 153 or with standard of the 1st class
		from 0 to 10 A at voltages from 0 to 1000 V and at frequencies from 1 to 2500 Hz	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	
68	Instruments measuring of	uality and accounting of q	uantity of electricity	_
68.1	Active and reactive energy meters	5 A at voltage up to 250 V	$U^{\circ}_{0.95} = 14 \cdot 10^{-4} \%$	
		from 0 to 10 A at voltage 0 to 1000 V	$U^{\circ}_{0.95} = 20 \cdot 10^{-4} \%$	Comparison with GET 153 or with standard of the 1st class
		from 10 to 50 A at voltage 0 to 1000 V	$U^{\circ}_{0.95} = 30 \cdot 10^{-4} \%$	
		from 50 to 200 A at voltage 0 to 1000 V	$U^{\circ}_{0.95} = 47 \cdot 10^{-4} \%$	
68.2	DC electricity meters	to 10 V via current channel	$U_{0.95} = 2 \cdot 10^{-5}$	Comparison with GET 153 or with standard of
		from 0 to 1000 V	$U_{0.95} = 2 \cdot 10^{-5}$	the 1st class
68.3	Installations for verification of AC electricity meters	from 0 to 10 A at voltage from 0 to 1000 V	$U^{\circ}_{0.95} = 2.10^{-3} \%$	
		from 10 to 50 A at voltage from 0 to 1000 V	$U^{\circ}_{0.95} = 3.10^{-3} \%$	Comparison with GET 153 or with standard of the 1st class
		from 50 to 200 A at voltage from 0 to 1000 V	$U^{0}_{0.95} = 5 \cdot 10^{-3} \%$	

1	2	3	4	5
68.4	Instruments for monitoring the quality of electrical energy (PQE) and parameters of electrical circuits	Voltage (root mean square value RMSV) $U_{nom} (1-500)$ V from 0.01 U_{nom} to 2 U_{nom}	$U_{0.95} = 2.10^{-5}$	Comparison with GET 153 or with standard of the 1st class
		First harmonic voltage from 0.01 to 1000 V	$U_{0.95} = 2 \cdot 10^{-5}$	Comparison with GET 153 or with standard of the 1st class
		AC frequency from 40 to 80 Hz	$U_{0.95} = 0.00005 \text{ Hz}$	Comparison with GET 153 or with reference frequency meter
		Voltage deviation from 0 to 100%	$U_{0.95} = 5 \cdot 10^{-5}$	Comparison with GET 153 or with standard of the 1st class
		Voltage unbalance coefficient in reverse and zero sequence 0 to 20%	$U_{0.95} = 0.015$ %	Comparison with GET 153 or with standard of the 1st class
		Total harmonic component coefficient of voltage and current from 0 to 3% from 3 to 30% from 30 to 100%	$U_{0.95} = 0.001 \%$ $U_{0.95} = 0.002 \%$ $U_{0.95} = 0.003 \%$	Comparison with GET 153 or with standard of the 1st class
		Coefficient of harmonic component of voltage and current of order <i>h</i> from 2 to 50 (0-50)% from 0 to 3% from 3 to 30% from 30 to 100%	$U_{0.95} = 0.001 \ \%$ $U_{0.95} = 0.002 \ \%$ $U_{0.95} = 0.003 \ \%$	Comparison with GET 153 or with standard of the 1st class
		Direct-sequence, zero- sequence and reverse- sequence voltages from 0 to 10 V from 0 to 100 V from 100 to 500 V	$U_{0.95} = 0.0005 \text{ V}$ $U_{0.95} = 0.005 \text{ V}$ $U_{0.95} = 0.02 \text{ V}$	Comparison with GET 153 or with standard of the 1st class
		Current (RMSV) from 0.1 to 200 A from 200 to 3000 A	$U^{o}_{0.95} = 0.01 \%$ $U^{o}_{0.95} = 0.05 \%$	Comparison with GET 153 or with standard of the 1st class
		Phase angle between voltage and current of the first harmonic of one phase from 0° to 360°	$U_{0.95} = 0.003^{\circ}$	Comparison with GET 153 or with standard of the 1st class
69	Instruments measuring n	nagnetic quantities		
69.1	Instruments measuring	$(1.10^{-8} - 1.10^{-6}) \mathrm{T}$	$U^{\rm o}_{0.95} = 0.3 \rm nT$	Comparison method
	DC magnetic induction	$(1.10^{-6} - 1.10^{-3}) \mathrm{T}$	$U^{\rm o}_{0.95} = 0.06 {\rm nT}$	with GET 12
		$(1.10^{-3} - 1.2) \text{ T}$	$U^{0}_{0.95} = 0.02 \%$	
		$(1.10^{-6} - 1.10^{-5}) \text{ T/A}$	$U^{\rm o}_{0.95} = 0.1$ %	
		$(1.10^{-5} - 1.10^{-3}) \text{ T/A}$	$U^{0}_{0.95} = 0.001 \%$	
		$(1.10^{-3} - 5.10^{-2}) \text{ T/A}$	$U^{\rm o}_{0.95} = 0.01 \%$	

1	2	3	4	5
69.2	Instruments measuring	$(1.10^{-6} - 1.10^{-3}) \text{ T/A}$	$U^{\rm o}_{0.95} = 0.05$ %	Comparison method
	AC magnetic induction in	$(1.10^{-3} - 20)$ Wb/T	$U^{\rm o}_{0.95} = 0.1$ %	with GET 12
	frequency range (0 – 20) kHz	$(5 \cdot 10^{-8} - 1 \cdot 10^{-3}) \mathrm{T}$	$U^{\circ}_{0.95} = 0.3 \%$	
		$(1 - 1.10^4) \text{ V/T}$	$U^{\circ}_{0.95} = 0.1 \%$	
69.3	Instruments measuring	$(1.10^{-6} - 1.10^{-4})$ Wb	$U^{\rm o}_{0.95} = 0.5 \ \mu {\rm Wb}$	Comparison method
	magnetic nux	$(1.10^{-4} - 0.1)$ Wb	$U^{\rm o}_{0.95} = 0.15$ %	with GET 12
		$(1.10^{-4} - 1.10^{-2})$ Wb/A	$U^{\rm o}{}_{0.95} = 0.1$ %	
69.4	Instruments measuring	$(1.10^{-6} - 1.10^3) \text{ A} \cdot \text{m}^2$	$U^{\rm o}_{0.95} = 0.3$ %	Comparison method
	magnetic moment	$(1.10^{-9} - 3.10^{-2}) \text{ Wb}/(4.\text{m}^2)$		with GET 12
		$(1.10^{-4} - 30) (A \cdot m^2)/A$		
69.5	Instruments measuring	$(1 \cdot 10^{-6} - 1) \text{ T} \cdot \text{m}^{-1}$	$U^{0}_{0.95} = 3 \%$	Comparison method
	gradient of magnetic induction	$(1.10^{-5} - 2.10^{-1}) \text{ T·m}^{-1} \cdot \Delta^{-1}$	$U^{0}_{0.95} = 1 \%$	with GET 12
69.6	Instruments measuring	$(1.10^{-5} - 0.1)$ Wb	$U_{0,05}^{0} = 0.5\%$	Method of indirect
07.0	static characteristics of	(magnetic flux)	0.95 - 0.570	measurements
	magnetically soft	capacitance)		
	materials	$(1.10^{-3} - 1.10^3)$ A	$U^{ m o}_{0.95} = 0.2$ %	
(0.7	T , , , •	(magnetomotive force)		
69.7	Instruments measuring	$1 \cdot 10^{-5} - 10$	$U_{0.95} = 1.5$ %	Method of indirect
	and magnetic permeability			mousurements
	of para-, dia- and weak	1 - 20	$U_{0.95} = 0.5$ %	
	ferromagnetic materials			
69.8	Instruments measuring	$(1.10^3 - 3.10^5)$ A/m	$U^{\rm o}_{0.95} = 2 \%$	Method of indirect
	magnetic materials	(coercive force)		measurements
70	Instruments measuring p	ower of electric current		
70.1	Phase calibrators	(0−360)°	$U_{0.95} = 0.05^{\circ}$	Direct measurement
		0.01 Hz $- 20$ MHz	0.70	method
70.2	Phase difference meters	(0 – 360)°	$U_{0.95} = 0.05^{\circ}$	Direct measurement
0.5.57		0.01 Hz – 20 MHz		method
OPTI	CAL–PHYSICAL MEASU	REMENTS		
71	Instruments measuring e	nergy brightness and radia	ation intensity	
71.1	Thermal emitters	$(40 - 61 \cdot 10^3) \text{ W/(sr \cdot m^2)}$	$U_{0.95} = 1.5$ %	Comparison with a
		$(1.10^{-4} - 15)$ W/sr	$U_{0.95} = 2.4$ %	comparator
71.2	Radiometers,	$(40 - 61 \cdot 10^3) \text{ W/(sr} \cdot \text{m}^2)$	$U_{0.95} = 3 \%$	Comparison with a
	IR receivers			comparator
		$(1 \cdot 10^{-4} - 15)$ W/sr	$U_{0.95} = 5 \%$	
72	Instruments measuring r	otation angle of polarization	on plane	
72.1	Reference settings (automatic polarimeters)	from minus 80° to 80°	$U_{0.95} = 0.0025^{\circ}$	Direct measurement method
72.2	Polarimeters, visual	from minus 90° to 90°	$U_{0.95} = 0.005^{\circ}$	Direct measurement
	saccharimeters, semi– automatic, automatic			method

1	2	3	4	5
73	Instruments measuring r	efractive index		
73.1	Total internal reflection (TIR) refractometers (Pulfrich, Abbe, submersible, specialized)	from 1.25 to 1.94	$U_{0.95} = 3.10^{-5}$	Direct measurement method
74	Instruments measuring c	olor coordinates		
74.1	Colorimeters, spectrocolorimeters by coordinates: X Y Z	from 2.5 to 109.0 from 1.4 to 98.0 from 1.7 to 107.0	$U_{0.95} = 0.4$	Direct measurement method
75	Instruments measuring c	hromaticity coordinates		L
75.1	Colorimeters, spectrocolorimeters by coordinates:	from 0.0039 to 0.7347	$U_{0.95} = 0.003$	Direct measurement method
76	y Instruments measuring s	nectral coefficient of direc	tional transmission	
76.1	Spectrophotometers.	from 1 to 99 %		Direct measurement
	photoelectric colorimeters	in wavelength range: from 0.20 to 0.40 μm from 0.40 to 0.78 μm from 0.78 to 2.5 μm	$U_{0.95} = 0.6$ % (abs.) $U_{0.95} = 0.3$ % (abs.) $U_{0.95} = 0.6$ % (abs.)	method
76.2	Sets of measures of spectral directional transmissions	from 1 to 95 % in the wavelength range: from 0.20 to 0.40 μm from 0.40 to 0.78 μm from 0.78 to 2.5 μm	$U_{0.95} = 0.6$ % (abs.) $U_{0.95} = 0.3$ % (abs.) $U_{0.95} = 0.6$ % (abs.)	Direct measurement method
77	Instruments measuring in	ntegral and reduced spect	ral directional transmissio	ns
77.1	Sets of measures of integral and reduced directional transmissions	from 1 to 95 % in the wavelength range: from 0.20 to 0.40 μm from 0.40 to 0.78 μm from 0.78 to 2.5 μm	$U_{0.95} = 0.6$ % (abs.) $U_{0.95} = 0.3$ % (abs.) $U_{0.95} = 0.6$ % (abs.)	Direct measurement method
78	Instruments measuring o	ptical density		
78.1	Microplate photometers and immunoassay and immunochemical analyzers	from 0.01 to 1.0 B from 1.0 to 2.0 B from 2.0 to 3.0 B from 3.0 to 4.0 B	$U_{0.95} = 0.004 \text{ B}$ $U_{0.95} = 0.007 \text{ B}$ $U_{0.95} = 0.011 \text{ B}$ $U_{0.95} = 0.02 \text{ B}$	Direct measurement method
79	Instruments measuring s	pectral coefficient of diffu	se reflection	
79.1	Analyzers of liquid, solid and bulk substances and materials	from 2 to 99 %	$U_{0.95} = 2.9 \%$ (abs.)	Direct measurement method
80	Instruments measuring n	neteorological optical rang	ge (MOR), directional tran	smission (DT)
80.1	Measuring transducers and measuring channels of meteorological optical range, directional	(10 – 50000) m	$U_{0,95} = (1 + 0.05 \cdot S) \text{ m},$ where S – meteorological optical range, m	Direct measurements using DT measures

1	2	3	4	5
	transmission (DT) of	(0 – 100) %	$U_{0.95} = 0.2$ %	
	atmosphere of stationary,			
	portable and remote			
	multifunctional			
	meteorological stations			
MEAS CONS	UREMENTS OF CHARA	CTERISTICS OF IONIZ	ING RADIATIONS AND	NUCLEAR
81	Means of measurement of dose equivalents and their	f kerma in air, kerma in ai r rates	ir, exposure dose, ambien	t, individual, directed
81.1	Secondary standards –	(5 – 300) kV		SK03–RP–Department
	dosimetric installations	$(1.10^{-6} - 10)$ Gy		No. 210–01–14–2019T
	for air kerma, exposure	$(3.10^{-8} - 3.10^{-1})$ C/kg	$U^{ m o}_{0.95} = 1.2$ %	
	dose, ambient, individual,	$(1 \cdot 10^{-7} - 1) \text{ Gy/s}$		
	directed dose equivalents	$(3 \cdot 10^{-9} - 3 \cdot 10^{-2})$ A/kg		
	and their A-ray radiation	$(1.10^{-7} - 1.10^{-2})$ Sv $(1.10^{-7} - 1.10^{-2})$ Sv/s		
<u> 91 2</u>	Sacondary standards	(1.10 - 1.10) SV/S	$I^{0} = -150^{4}$	SK03 210/MK 01
01.2	dosimetric installations	(0.00 - 3) MeV $(1.10^{-7} - 20)$ GV	$U_{0.95} - 1.3$ 70	15-2015-T
	for air kerma, exposure	$(3.10^{-9} - 6.10^{-1})$ C/kg		15 2015 1
	dose, ambient, individual,	$(1.10^{-8} - 2.10^{-2})$ Gy/s		
	directed dose equivalents	$(3 \cdot 10^{-10} - 6 \cdot 10^{-4})$ A/kg		
	and their gamma radiation	$(1 \cdot 10^{-7} - 10)$ Sv		
	rates	$(1.10^{-8} - 1.10^{-2})$ Sv/s		
81.3	Secondary standards –	(0.005 - 3) MeV	$U^{\rm o}_{0.95} = 1.3$ %	SK03-210/MK-01-
	dosimeters with ionization	$(1.10^{-7} - 20)$ Gy $(2.10^{-9} - 6.10^{-1})$ C/l/m		02-2010-1, SK02 210/MK 01
	kerma exposure dose and	$(3.10^{-8} - 2) \text{ Gv/s}$		01-2008-T_SK03-
	their x-ray and gamma	$(3.10^{-10} - 6.10^{-2})$ A/kg		210/MK-01-06-2010-
	radiation rates			Т
81.4	Working standards (WS)	$(1 \cdot 10^{-10} - 2 \cdot 10^{-4})$ Gy/s	$U^{\rm o}_{0.95} = 2 \%$	SK03-210/MK-01-
	- radionuclide sources of	$(3 \cdot 10^{-12} - 6 \cdot 10^{-6})$ A/kg		04–2011–T
	$x-rays - {}^{55}Fe, {}^{109}Cd$			
81.5	WS – dosimetric	(5 - 300) kV	$U^{ m o}_{0.95} = 1.5$ %	SK03–RP–Department
	verification installations	$(1 \cdot 10^{-8} - 200)$ Gy		No. 210–01–14–2019T
	of X-ray radiation	$(3 \cdot 10^{-10} - 6) \text{ C/kg}$		
		$(1^{-10} - 2) \text{ Gy/s}$ $(3 \cdot 10^{-11} - 6 \cdot 10^{-2}) \text{ A/kg}$		
		$(1.10^{-8} - 10)$ Sv		
		$(1.10^{-9} - 3.10^{-2})$ Sv/s		
81.6	WS – meters of the	(40 – 250) kV	$U^{\circ}_{0.95} = 4 \%$	SK03-RP-Otd. No.
	product of the dose	$(1 \cdot 10^{-7} - 10)$ Gy·m ²		210-01-11-2019-Т
	(kerma in air) on the area	$(1.10^{-9} - 3.10^{-2})$		
	reference	Gr·m ² /s		
81.7	High accuracy air kerma	$(2 \cdot 10^{-9} - 1 \cdot 10^{-1}) \text{ P} \cdot \text{s}^{-1}$		SK03-210/MK-01-
	and exposure dose meters	$(2 \cdot 10^{-11} - 1 \cdot 10^{-5})$ Gy/s		02-2010-T,
		$(2.10^{-11} - 30)$ Gy $(2.10^{-11} - 1.10^{-3})$ Sy/s	$U^{\circ}_{0.95} = 1.3 \%$	SK03-210/MIK-01- 01 2008 T SK03
		$(2 \cdot 10^{-10} - 30)$ Sv		210/MK-01-06-2010-T
81.8	Measuring instruments	$(1.10^{-7} - 10) \text{ Gv} \cdot \text{m}^2$	$U^{0}_{0.95} = 4 \%$	SK03–RP– Otd. No
	(MI) – meters of dose	$(1.10^{-9} - 3.10^{-2}) \text{Gy} \cdot \text{m}^2/\text{s}$	- 0.75 . 70	210-01-11-2019-T
	product (kerma in air) by			
	area			

1	2	3	4	5
81.9	MI – meters of the product of dose (kerma in air) by length	$(3 \cdot 10^{-5} - 500)$ Gy·cm $(3 \cdot 10^{-6} - 20)$ Gy·cm/s	$U^{\rm o}_{0.95} = 5 \%$	SK03–RP– Otd . No. 210–01–11–2019–T
81.10	WS – reference energy flow calorimeters	(5 - 200) kV $(2 \cdot 10^{-5} - 2 \cdot 10^{-3}) \text{ W}$	$U^{ m o}_{0.95}=7~\%$	Comparator method
81.11	MI – X–ray energy flux sources	$(2 \cdot 10^{-5} - 2 \cdot 10^{-3})$ W	$U^{\rm o}{}_{0.95}=20~\%$	SK03–RP–Department No. 210–01–09–2019
81.12	MI – instruments for non- invasive measurement of anode voltage of X-ray diagnostic devices	(22 – 150) kV	$U^{\rm o}{}_{0.95}=2$ %	SK03-RP-Otd.210- 01-12-2019-T
81.13	WS – radionuclide sources of gamma radiation ¹³⁷ Cs, 60Co, ²²⁶ Ra, ²⁴¹ Am, ⁵⁷ Co	$(1 \cdot 10^{-10} - 2 \cdot 10^{-4})$ Gy/s $(3 \cdot 10^{-12} - 6 \cdot 10^{-6})$ A/kg	$U^{\circ}_{0.95} = 1.4 \%$	SK03–210/MK–01– 04–2011–T, SK03– 210/MK–01–15–2015– T
81.14	WS – dosimetric verification installations for gamma radiation	$\begin{array}{c} (0.06-3) \ MeV \\ (1\cdot 10^{-9}-10) \ Gy \\ (3\cdot 10^{-11}-3\cdot 10^{-1}) \ C/kg \\ (1\cdot 10^{-10}-1\cdot 10^{-2}) \ Gy/s \\ (3\cdot 10^{-11}-3\ 10^{-4}) \ A/kg \\ (1\cdot 10^{-9}-10) \ Sv \\ (1\cdot 10^{-10}-1\cdot 10^{-2}) \ Sv/s \end{array}$	$U^{ m o}_{0.95} = 1.4$ %	SK03–210/MK–01– 15–2015–T
81.15	WS – mobile dosimetric verification setups for gamma radiation	$\begin{array}{c} (0.06-0.7) \ MeV \\ (1\cdot10^{-9}-2\cdot10^{-1}) \ Gy \\ (3\cdot10^{-11}-6\cdot10^{-3}) \ C/kg \\ (1\cdot10^{-10}-2\cdot10^{-4}) \ Gy/s \\ (3\cdot10^{-12}-6\cdot10^{-6}) \ A/kg \end{array}$	$U^{ m o}_{0.95} = 1.4~\%$	SK03–210/MK–01– 15–2015–T
81.16	MI – dosimetric radionuclide sources	$(1 \cdot 10^{-10} - 2 \cdot 10^{-4})$ Gy/s $(3 \cdot 10^{-12} - 6 \cdot 10^{-6})$ A/kg	$U^{ m o}{}_{0.95}=1.4~\%$	SK03–210/MK–01– 04–2011–T, SK03– 210/MK–01–15–2015– T, SK03–210/MK–01– 05–2011–T
81.17	MI – individual dosimeters and dosimetric systems	(1·10 ⁻⁸ – 10) Sv (3·10 ⁻¹¹ – 5·10 ⁻³) Sv/s	$U^{\rm o}_{0.95} = 1.3$ %	SK03-210/MK-01- 02-2010-T, SK03-210/MK-01- 01-2008-T, SK03- 210/MK-01-06-2010- T
81.18	MI – dosimetric irradiation installations	$(1 \cdot 10^{-9} - 2 \cdot 10^{-3})$ Gy $(3 \cdot 10^{-11} - 60)$ C/kg	$U^{\rm o}_{0.95} = 1.4$ %	SK03–210/MK–01– 15–2015–T
81.19	WS – dosimeters for air kerma, exposure dose, ambient, individual, directed dose equivalents of X–ray and gamma radiation	$\begin{array}{c} (0.00\overline{5} - 3) \text{ MeV} \\ (1 \cdot 10^{-9} - 200) \text{ Gy} \\ (3 \cdot 10^{-11} - 6) \text{ C/kg} \\ (1 \cdot 10^{-10} - 2) \text{ Gy/s} \\ (3 \cdot 10^{-12} - 6 \cdot 10^{-2}) \text{ A/kg} \\ (1 \cdot 10^{-9} - 10) \text{ Sv} \\ (1 \cdot 10^{-10} - 3 \cdot 10^{-2}) \text{ Sv/s} \end{array}$	U°0.95 = 1.3 %	SK03-210/MK-01- 02-2010-T, SK03-210/MK-01- 01-2008-T, SK03- 210/MK-01-06-2010- T, SK03-210/MK-01- 03-2010-T
81.20	WS – radionuclide sources of gamma radiation ¹³⁷ Cs, ⁶⁰ Co, ²²⁶ Ra, ²⁴¹ Am, ⁵⁷ Co, ⁷⁵ Se, ¹⁹² Ir, ¹⁵³ Gd	(3·10 ⁻¹¹ – 2·10 ⁻³) Gy/s (9·10 ⁻¹³ – 6·10 ⁻⁵) A/kg	$U^{\rm o}_{0.95} = 1.4$ %	SK03-210/MK-01- 04-2011-T, SK03- 210/MK-01-15-2015- T, SK03-210/MK-01- 05-2011-T,

1	2	3	4	5
				SK03-210/MK-01- 08-2014-T
81.21	WS – radionuclide sources of x–rays ⁵⁵ Fe, ¹⁰⁹ Cd, ¹²⁵ I	$(1 \cdot 10^{-11} - 2 \cdot 10^{-5}) \text{ Gy/s}$ $(3 \cdot 10^{-13} - 6 \cdot 10^{-7}) \text{ A/kg}$	$U^{0}_{0.95} = 1.9$ %	SK03–210/MK–01– 04–2011–T
81.22	MI – dosimeters for air kerma, exposure dose, ambient, directed dose equivalents of x–ray and gamma radiation	$\begin{array}{c} (1 \cdot 10^{-9} - 200) \ \text{Gy} \\ (3 \cdot 10^{-11} - 6) \ \text{C/kg} \\ (1 \cdot 10^{-10} - 2) \ \text{Gy/s} \\ (3 \cdot 10^{-12} - 6 \cdot 10^{-2}) \ \text{A/kg} \\ (1 \cdot 10^{-9} - 10) \ \text{Sv} \\ (1 \cdot 10^{-10} - 3 \cdot 10^{-2}) \ \text{Sv/s} \end{array}$	<i>U</i> ° _{0.95} = 1.3 %	SK03–210/MK–01– 02–2010–T, SK03–210/MK–01– 01–2008–T, SK03– 210/MK–01–06–2010– T, SK03–210/MK–01– 03–2010–T
81.23	MI – dosimeters for air kerma, exposure dose, ambient, directed dose equivalents	$\begin{array}{c} (1 \cdot 10^{-9} - 200) \ Gy \\ (3 \cdot 10^{-11} - 6) \ C/kg \\ (1 \cdot 10^{-10} - 2) \ Gy/s \\ (3 \cdot 10^{-12} - 6 \cdot 10^{-2}) \ A/kg \\ (1 \cdot 10^{-9} - 10) \ Sv \\ (1 \cdot 10^{-11} - 3 \cdot 10^{-2}) \ Sv/s \end{array}$	U° _{0.95} = 1.3 %	SK03–210/MK–01– 02–2010–T, SK03–210/MK–01– 01–2008–T, SK03– 210/MK–01–06–2010– T, SK03–210/MK–01– 03–2010–T
82	Instruments measuring a	bsorbed dose of photon ra	diation	
82.1	WS – dosimetric calibration setups (verification by absorbed dose in water)	(1·10 ⁻¹ – 1·10 ²) Gy	$U^{0}_{0.95} = 2 \%$	SK03–210/MK–08– 01–2010, SK–03–RP– Otd No. 210–08–01– 2020
82.2	WS – dosimetric instruments (verification by absorbed dose in water)	(1·10 ⁻¹ – 1·10 ²) Gy	$U^{0}_{0.95} = 2 \%$	SK03–210/MK–08– 01–2010
82.3	MI – absorbed dose dosimeters for special purposes	$(1 \cdot 10^{-1} - 1 \cdot 10^2) \text{ Gy}$	$U^{0}_{0.95} = 1.3$ %	SK-03-RP-Otd No. 210-08-01-2020
83	Instruments measuring a equivalents and their puls	air kerma, air kerma, ex sed X–ray radiation rates	posure dose, ambient ind	lividual, directed dose
83.1	WS – pulsed X–ray dosimeters	$\begin{array}{c} (50-600) \text{ keV} \\ (8\cdot10^{-8}-1\cdot10^2) \text{ C/kg} \\ (3\cdot10^{-6}-6\cdot10^3) \text{ Gy} \\ (3\cdot10^{-6}-6\cdot10^3) \text{ Sv} \\ (8\cdot10^{-9}-3\cdot10^{-2}) \text{ A/kg} \\ (3\cdot10^{-7}-1) \text{ Gy/s} \\ (3\cdot10^{-7}-1) \text{ Sv/s} \end{array}$	$U_{0.95} = 5$ %	SK-03-RP-Otd No. 210-08-01-2020
83.2	WS – dosimeters of pulsed photon radiation	(0.05 – 3) MeV (8·10 ⁻⁶ – 1·10 ⁻²) C/kg	$U^{\circ}_{0.95} = 5 \%$	SK03–RP–Department No. 210–01–10–2015– T
83.3	MI – pulsed X–ray dosimeters	$\begin{array}{c} (8\cdot10^{-8}-1) \text{ C/kg} \\ (3\cdot10^{-6}-60) \text{ Gy} \\ (3\cdot10^{-6}-60) \text{ Sv} \\ (8\cdot10^{-9}-3\cdot10^{-2}) \text{ A/kg} \\ (3\cdot10^{-7}-1) \text{ Gy/s} \\ (3\cdot10^{-7}-1) \text{ Sv/s} \end{array}$	$U^{0}_{0.95} = 5 \%$	SK03–RP–Department No. 210–01–10–2015– T
83.4	MI – sources of pulsed X– ray radiation	$\frac{(8 \cdot 10^{-8} - 1 \cdot 10^2) \text{ C/kg}}{\text{at the pulse repetition rate}}$ up to 1000 Hz	$U^{0}_{0.95} = 6 \%$	SK03–RP–Department No. 210–01–10–2015– T

1	2	3	4	5
83.5	MI – dosimetric installations of pulsed X– ray radiation	(3·10 ⁻⁴ – 3) C/kg	$U^{0}_{0.95} = 6 \%$	SK03–RP–Department No. 210–01–14– 2019T, SK03–RP– Department No. 210– 01–10–2015
84	Instruments measuring a material	bsorbed dose and absorbe	d dose rate of beta radiati	on in tissue –equivalent
84.1	Secondary standards for the absorbed dose of beta radiation in tissue equivalent material: – radionuclide sources of beta radiation: ¹⁴⁷ Pm, ²⁰⁴ Tl, ⁹⁰ Sr + ⁹⁰ Y; – measuring installations	$(1 \cdot 10^{-3} - 1 \cdot 10^2)$ Gy $(1 \cdot 10^{-5} - 1)$ Gy/s $(1 \cdot 10^{-5} - 1 \cdot 10^2)$ Gy $(1 \cdot 10^{-8} - 1)$ Gy/s	$U^{0}_{0.95} = 5 \%$	SK-03-RP- Department No. 210- 03-01-2009-T
84.2	WS for the absorbed dose of beta radiation in tissue -equivalent material: - radionuclide sources of beta radiation: ¹⁴⁷ Pm, ²⁰⁴ Tl, ⁹⁰ Sr + ⁹⁰ Y; - measuring installations	$(1 \cdot 10^{-5} - 1 \cdot 10^2)$ Gy $(1 \cdot 10^{-8} - 1)$ Gy/s $(1 \cdot 10^{-5} - 1 \cdot 10^2)$ Gr $(1 \cdot 10^{-8} - 1)$ Gy/s	U° _{0.95} = 7 %	SK-03-RP- Department No. 210- 03-01-2009-T
84.3	MI for the absorbed dose of beta radiation in tissue -equivalent material: - radionuclide sources of beta radiation: 147Pm, ²⁰⁴ Tl, ⁹⁰ Sr, ⁹⁰ Y; - electronic dosimeters, direct- reading; - solid-state dosimeters; - technological installations	$\begin{array}{c} (1 \cdot 10^{-5} - 1 \cdot 10^3) \text{ Gy} \\ (1 \cdot 10^{-8} - 1) \text{ Gy/s} \end{array}$ $\begin{array}{c} (1 \cdot 10^{-3} - 1 \cdot 10^5) \text{ Gy} \\ (1 \cdot 10^{-5} - 10) \text{ Gy/s} \\ (1 - 1 \cdot 10^6) \text{ Gy} \\ (1 - 10) \text{ Gy/s} \\ (1 - 10) \text{ Gy/s} \\ (1 - 10) \text{ Gy/s} \end{array}$	U° _{0.95} = 3 %	SK-03-RP- Department No. 210- 03-02-2009-T
85	Instruments measuring fl of neutron radiation	ux and flux density of neu	tron radiation, the ambie	ent dose equivalent rate
85.1	Secondary standards: radionuclide neutron sources, measuring installations, dosimeters	$\begin{array}{c} (1{\cdot}10^3-1{\cdot}10^{14})\ s^{-1} \\ (1{\cdot}10\ ^4-1{\cdot}10^{10})\ s^{-1}m^2 \\ (5{\cdot}10^{-4}-5{\cdot}10^2)\ \mu Sv/s \end{array}$	$U^{0}_{0.95} = 1.2 \%$	SK 03–210/MK–05– 04–2011–T SK 03–210/MK–05– 10–2020–T SK 03–210/MK–05– 06–2011–T SK 03–210/MK–05– 05–2009–T
85.2	WS – neutron sources	$\begin{array}{c} (1 \cdot 10^2 - 1 \cdot 10^9) \ s^{-1} \\ (1 \cdot 10^4 - 1 \cdot 10^{10}) \ s^{-1}m^{-2} \\ (5 \cdot 10^{-4} - 5 \cdot 10^2) \ \mu Sv/s \\ (1 \cdot 10^3 - 1 \cdot 10^9) \ s^{-1} \\ (1 \cdot 10^4 - 1 \cdot 10^{10}) \ s^{-1}m^{-2} \end{array}$	U° _{0.95} = 1.2 %	SK 03-210/MK-05- 03-2008-T SK 03-210/MK-05- 01-2008-T SK 03-210/MK-05- 04-2011-T SK 03-210/MK-05- 06-2011-T SK 03-210/MK-05- 05-2009-T

1	2	3	4	5
85.3	WS – neutron flux density radiometers	$(1.10^8 - 1.10^{15}) \text{ s}^{-1}\text{m}^2$	$U^{ m o}_{0.95} = 1.5~\%$	SK 03–210/MK–05– 06–2011–T
		$(1.10^3 - 5.10^8) \text{ s}^{-1}\text{m}^{-2}$		SK 03–210/MK–05–
		$(1.10^4 - 1.10^{15}) \text{ s}^{-1}\text{m}^{-2}$		SK 03–210/MK–05–
				06–2011–T SK 03–210/MK–05–
				05–2009–T
85.4	MI – dosimeters of neutron radiation	$(5 \cdot 10^{-4} - 1 \cdot 10^6) \ \mu Sv/s$	$U^{ m o}_{0.95} = 1.5$ %	SK 03–210/MK–06– 01–2008–T
				SK 03–210/MK–06–
				SK 03–210/MK–06–
				03-2010-T SK 03T PP No 210
				06–17–2010
				SK-03T-RP-
				06–05–2010–T
85.5	MI – neutron radiation	$(1.10^3 - 1.10^{15}) \text{ s}^{-1}\text{m}^{-2}$	$U^{0}_{0.95} = 1.5 \%$	SK 03-210/MK-06-
	radiometers			12–2010–T SK 03–210/MK–06–
				13–2010–T
				SK 03–210/MK–06–
86	Instruments measuring a	ctivity, specific, volumetri	c activity of radionuclides	narticle flux and flux
00	density	currey, specific, volument		, pur trere nux unu nux
86.1	Secondary standards –	$(1.10^4 - 1.10^8) \text{ Bq} \cdot \text{g}^{-1}$	$U_{0.95} = 1.5$ %	SK 03–210/MK–06–
	gamma emitting			SK 03–210/MK–06–
	radionuclides			08–2009–T
				SK 03–210/MK–06– 09–2009–T
86.2	WS – sources of photon	$(2 - 2 \cdot 10^{11})$ Bq	$U^{0}_{0.95} = 1 \%$	SK 03–210/MK–06–
	radiation	$(5-5\cdot10^{8})$ s ⁻¹ m ⁻²		SK 03–210/MK–06–
		, ,		09–2009–T
86.3	Secondary standards –	$(2-2\cdot10^{11})$ Bq $(5-5\cdot10^4)$ 1/s	$U_{0.95} = 1$ %	SK 03–210/MK–06–
	photon radiation	$(5 \cdot 10^3 - 5 \cdot 10^8) 1/(s \cdot m^2)$		00-2010-1
86.4	WS – sources of alpha	$(2 - 2 \cdot 10^{11})$ Bq	$U^{\rm o}{}_{0.95} = 1 \%$	SK 03–210/MK–06–
	radiation (USAI, P9, etc.)	$(3 - 3 \cdot 10^8) \text{ s}^{-1}\text{m}^{-2}$		SK 03–210/MK–06–
				02–2008–T
				SK 03–210/MK–06– 03–2010–T
				SK-03T-RP-No. 210-
				06–17–2010 SK 02T PD
				Department No. 210–
				06–05–2010–T
86.5	WS – sources of beta	$(2-2.10^{11})$ Bq (5 5.10 ⁸) c ⁻¹	$U^{\rm o}_{0.95} = 1 \%$	SK 03–210/MK–0 6 –
	etc.)	$(10 - 1.10^8) \text{ s}^{-1}\text{m}^{-2}$		13-2010-1

1	2	3	4	5
86.6	WS – solutions of alpha–, beta–, gamma–emitting radionuclides	$(1.10^3 - 1.10^8)$ Bq	$U^{0}_{0.95} = 1 \%$	SK-03-RP- Department No. 210- 06-48-2020-T
86.7	Working standards – radionuclide sources for special purposes	$\begin{array}{c} (1-1\cdot10^{12}) \ Bq \\ (1\cdot10^2-1\cdot10^6) \ Bq\cdot kg^{-1} \\ (5-5\cdot10^5) \ 1 \ /s \\ (5\cdot10^3-5\cdot10^8) \ 1/(s\cdot m^2) \\ (5\cdot10^3-5\cdot10^8) \ 1/(s\cdot sr) \end{array}$	<i>U</i> _{0.95} = 3 %	SK 03–210/MK–06– 15–2010–T
86.8	Secondary standards – radiometric installations for alpha, beta, photon radiation	$(1 - 1 \cdot 10^{13})$ Bq (5 - 5 \cdot 10^5) 1/s (5 \cdot 10^3 - 5 \cdot 10^8) 1/(s \cdot sr)	$U^{ m o}_{0.95} = 0.5$ %	SK-03T-RP- Department No. 210- 06-19-2011
86.9	MI – dosimeters– radiometers of alpha, beta radiation, XRD monitors , surface contamination radiometers	$(2 - 1.10^{6}) \text{ min}^{-1} \cdot \text{cm}^{-2}$ (alpha) $(6 - 1.10^{6}) \text{ min}^{-1} \cdot \text{cm}^{-2}$ (beta)	$U^{\circ}_{0.95} = 5 \%$	SK03–RP–Department No. 210–04–09–2018 SK03–RP–Department No. 210–04–08–2018
86.10	MI – radiometers dose calibrators	$(1.10^6 - 5.10^9)$ Bq	$U^{\circ}_{0.95} = 5 \%$	SK-03RP-Department No. 210-06-45-2018
86.11	MI – spectrometer– radiometers, radiometers	$\begin{array}{c} (0.05-1.5\cdot10^5) \ {\rm Bq} \\ ({\rm alpha}) \\ (1-2\cdot10^{\ 5}) \ {\rm Bq} \ ({\rm beta}) \\ (1-1\cdot10^{\ 5}) \ {\rm Bq} \ ({\rm gamma}) \\ (5-1\cdot10^4) \ {\rm Bq}\cdot {\rm kg}^{\ -1} \\ ({\rm gamma}) \end{array}$	<i>U</i> ° _{0.95} = 6 %	SK 03–210/MK–06– 52–2021–S
86.12	MI – liquid scintillation beta–radiation radiometers	$(2 - 1.10^7)$ Bq	$U^{\circ}_{0.95} = 5 \%$	SK 03–210/MK–06– 53–2021
86.13	β–radiation radiometers	$(2 - 2 \cdot 10^5)$ Bq	$U^{\circ}_{0.95} = 5 \%$	SK03–RP–Department No. 210–04–08–2018
86.14	MI – radiometers of volumetric activity of natural radioactive gases	$(1 - 2.10^6) \text{ Bq} \cdot \text{m}^{-3}$	$U^{\circ}_{0.95} = 5 \%$	SK 03–210/MK–06– 15–2010–T
86.15	MI – radiometers of volumetric activity of natural radioactive aerosols	(1 – 1·10 ⁶) Bq·m ⁻³	$U^{\circ}_{0.95} = 5\%$	SK-03T-RP- Department No. 210- 06-19-2011
86.16	Secondary standards – sources of gamma radiation based on radionuclide Ra–226, solutions of Ra–226	(0.001 - 200) mg $(0.1 - 1.10^6) \text{ ng}$ $(3.7 - 3.7.10^7) \text{ Bq}$	$U^{\circ}_{0.95} = 1 \%$	SK 03–RP– Department No. 210– 06–21–2011–T SK 03–RP– Department No. 210– 06–22–2011–T
86.17	WS – sources of gamma radiation based on radionuclide Ra –226, solutions of Ra –226	(0.001 - 200) mg $(0.1 - 1 \ 10^6) \text{ ng}$ $(3.7 - 3.7 \cdot 10^7) \text{ Bq}$	$U^{\circ}_{0.95} = 1 \%$	SK–03RP–Department No. 210–06–16–2010– T
86.18	MI – sources of gamma radiation based on radionuclide Ra –226	$(0.001 - 1 \ 00) \text{ mg}$ $(0.1 - 1.10^6) \text{ ng}$ $(3.7 - 3.7.10^7) \text{ Bq}$	$U^{\circ}_{0.95} = 1 \%$	SK 03–RP– Department No. 210– 06–21–2011–T SK 03–RP– Department No. 210–

1	2	3	4	5
				06-22-2011-T
87	Instruments measuring fl fluence (transfer) of ener	lux, flux density and fluer gy of electron and bremsst	nce (transfer) of electrons trahlung	, flux, flux density and
87.1	Secondary standards – radiometric and dosimetric installations of industrial accelerators	$\begin{array}{c} (0.1-50) \ \text{MeV} \\ (1\cdot10^{12}-1\cdot10^{21}) \ \text{s}^{-1} \\ (1\cdot10^{10}-1\cdot10^{19}) \ \text{s}^{-1}\cdot\text{cm}^{-2} \\ (1\cdot10^{10}-1\cdot10^{21}) \ \text{cm}^{-2} \\ (1\cdot10^{-1}-1\cdot10^{3}) \ \text{W} \\ (1\cdot10^{-2}-1\cdot10^{2}) \ \text{W}\cdot\text{cm}^{-2} \\ (1\cdot10^{-1}-1\cdot10^{3}) \ \text{J}\cdot\text{cm}^{-2} \end{array}$	$U^{\circ}_{0.95} = 1.8$ %	SK 03–210/MK–04– 04–2020–T
87.2	Secondary standards – radiometric and dosimetric installations of medical accelerators	$\begin{array}{c} (1-50) \ \text{MeV} \\ (1\cdot 10^{10}-1\cdot 10^{16}) \ \text{s}^{-1} \\ (1\cdot 10^8-1\cdot 10^{14}) \ \text{s}^{-1}\cdot \text{cm}^{-2} \\ (1\cdot 10^9-1\cdot 10^{16}) \ \text{cm}^{-2} \\ (1\cdot 10^{-4}-1\cdot 10^2) \ \text{W} \\ (1\cdot 10^{-5}-10) \ \text{W}\cdot \text{cm}^{-2} \\ (1\cdot 10^{-3}-1\cdot 10^3) \ \text{J}\cdot \text{cm}^{-2} \end{array}$	$U^{\circ}_{0.95} = 1.8 \%$	SK 03–210/MK–04– 10–2021–S
87.3	MI – flux radiometers, flux density and fluence (transfer) of high precision electrons	$\begin{array}{c} (0.1-15) \text{ MeV} \\ (1\cdot10^{10}-1\cdot10^{22}) \text{ s}^{-1} \\ (1\cdot10^8-1\cdot10^{19}) \text{ s}^{-1}\cdot\text{cm}^{-2} \\ (1\cdot10^9-1\cdot10^{21}) \text{ cm}^{-2} \end{array}$	$U^{\circ}_{0.95} = 1.8$ %	SK 03—RP– Department No. 210– 04–08–2018
87.4	MI – increased accuracy dosimeters of flux, flux density and fluence (transfer) of energy of electronic and bremsstrahlung	$(1 - 50) \text{ MeV}$ $(1 \cdot 10^{-4} - 10^{4}) \text{ W}$ $(1 \cdot 10^{-5} - 1 \cdot 10^{2}) \text{ W} \cdot \text{cm}^{-2}$ $(1 \cdot 10^{-3} - 1 \cdot 10^{3}) \text{ J cm}^{-2}$	$U^{0}_{0.95} = 1.8$ %	SK-03-RP- Department No. 210- 04-09-2015
MEDI	CAL MEASUREMENTS			
88	Instruments measuring cl	haracteristics of nucleic ac	cids	
88.1	Bioanalytical measuring complexes, including instruments for polymerase chain reaction, also in real time, DNA amplifiers, PCR analyzers	from 1·10 ³ to 1·10 ⁸ cm ⁻³ (copies/ml) from 1 to 50 g/kg	$U^{0}_{0.95} = 12 \%$	SK 03–16k–21–T
89	Instruments measuring cl	haracteristics of biological	l fluids	ſ
89.1	Immunological analyzers	to 70 nmol/l	$U^{\circ}_{0.95} = 11 \%$	SK 03–244–14k–21–T
89.2	Body Fluid Analyzers	to 100 g/dm ³ to 500 mmol/dm ³ to 2.5 f.u.p.	$U^{\circ}_{0.95} = 7 \%$ $U^{\circ}_{0.95} = 7 \%$ $U^{\circ}_{0.95} = 7 \%$	SK 03–209–6.1.2/02
89.3	Hematological analyzers	RBC: to $9.9 \cdot 10^{12} \text{ dm}^{-3}$ WBC: to $99.9 \cdot 10^9 \text{ dm}^{-3}$ HGB: to 300 mg/dm^3	$U^{\circ}_{0.95} = 7 \%$ $U^{\circ}_{0.95} = 7 \%$ $U^{\circ}_{0.95} = 5 \%$	SK 03–244–13k–21–T
89.4	Urine analyzers	Molar concentration of glucose ($C_{glucose}$) to 35 mmol/dm ³ Mass concentration of protein ($C_{protein}$)	$U^{\circ}_{0.95} = 10 \%$ $U^{\circ}_{0.95} = 10 \%$ $U^{\circ}_{0.95} = 10 \%$ $U_{0.95} = 0.02$	SK 03–244–15k–21–T

1	2	3	4	5
		up to 10 g/l Density (ρ): up to 1.2 g/ml pH: to 12		
89.5	Hemoglobinometers	to 0.5 f.u.p. to 300 mg/dm ³	$U^{\circ}_{0.95} = 5 \%$ $U^{\circ}_{0.95} = 5 \%$	Method of comparison with CRM
ELEN	MENTS OF MEASURING	SYSTEMS (MS)		
90	Measuring systems and e	lements of measuring syst	ems	
90.1	Information-measuring systems (IMS) for electricity metering, IMS for monitoring the quality of electrical energy	(0 – 20) mA	$U_{0.95} = 0.02 \text{ mA}$	Method of direct measurements, comparison with grade standard
	parameters of electrical	(minus 100 – 100) mV	$U_{0.95} = 0.01 \text{ mV}$	-
	circuits and telemetry,	(0-10) V	$U_{0.95} = 0.01 \text{ V}$	
	current-measuring	1 Hz - 16 kHz	$U_{0.95} = 0.0001 \text{ kHz}$	
	complexes of IMS, elements of IMS	(minus 200 – 2500) °C	$U_{0.95} = 0.03 \text{ °C}$	
	measuring channels of	$(10^{-2} - 10^5)$ Ohm	$U_{0.95} = 0.02 \ \Omega$	
	automated information	$(10^{-3} - 750)$ V	$U_{0.95} = 0.01 \text{ V}$	
	and measurement system	$(10^{-4} - 240)$ A	$U_{0.95} = 0.01 \text{ A}$	
	for energy accounting	kW h	$U_{0.95} = 0.02 \text{ kWh}$	
		(Depending on MI ranges and errors used in the system)		
90.2	Information-measuring systems (IMS) of wide (targeted) application, developed for serial and single production in accordance with the scope of accreditation, IMS complexes, IMS channels, IMS elements	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect meas- urements)	Direct measurement method
90.3	Measuring multichannel systems for measuring hydrological parameters of the aquatic environment of seas and oceans, including: marine and oceanological sounding devices and profilers, measuring hydrological equipment of drifting, towed, automatic, manned and autonomous surface underwater vehicles with measuring channels and measuring transducers	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)

1	2	3	4	5
90.4	Multi-channel measuring systems and complexes for measuring meteorological parameters of the air (surface layer of the atmosphere), including : measuring equipment for automatic and manned meteorological stations for synoptic observations (weather stations), profilers, equipment for meteorological support of land and sea-based aviation, ship weather stations with measuring channels and measuring transducers	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)
90.5	Measuring systems, mobile measuring complexes, measuring channels (using, inter alia, joint, cumulative and indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)
	2, Fedy	uninsky Str., Lomonosov 2	2198412, St. Petersburg	
MECH	IANICAL MEASUREME	NTS		
91	Instruments measuring li	near motion parameters	Ι	
91.1	Reference accelerometers of the 1st class	(1·10 ⁻³ – 500) m/s ²	$U^{\circ}_{0.95} = (4.4 - 0.0003) \%$	Method of direct measurements using state primary standard for the units of linear acceleration and flat angle during angular displacement of a solid body GET 94
91.2	Reference rotary installations of the 2nd class	$(1 \cdot 10^{-3} - 10) \text{ m/s}^2$	$U^{\circ}_{0.95} = (4.4 - 0.0003) \%$	Comparison with reference accelerometer
91.3	Reference centrifuges of the 2nd class	$(5-500) \text{ m/s}^2$	$U^{\circ}_{0.95} = 0.01 \%$	Comparison with reference accelerometer
91.4	Double reference centrifuges of the 2nd class	(5 – 100) m/s ² (0.5 – 30) Hz	$U^{\circ}_{0.95} = 0.02 \%$	Comparison with reference accelerometer
91.5	High accuracy accelerometers	(1·10 ^{·3} – 3500) m/s ²	$U^{o}_{0.95} = (0.006 - 0.0003) \%$	Method of direct measurements using state primary standard for the units of linear acceleration and flat angle during angular displacement of solid body GET 94

1	2	3	4	5
91.6	Instruments measuring linear speed, bullet flight speed recorders, ballistic recorders	(1 – 2000) m/s	$U^{ m o}_{0.95} = 0.1$ %	Method of indirect measurements using state working standard and the state secondary standard of the speed unit
91.7	Measuring instruments for linear speed, including laser anemometers	(1·10 ⁻² – 100) m/s	$U^{ m o}_{0.95}=0.1~\%$	Method of indirect measurements using state working standard of the 3rd class for the unit of length and state working standard for the unit of speed
92	Instruments measuring p	arameters of angular mot	ion	
92.1	Reference transducers of flat angle at angular displacement of solid body. Angle measuring transducers.	0.4" – 360°	<i>U</i> _{0.95} = 0.1"	Method of direct measurements using state primary standard for the units of linear acceleration and flat angle during angular displacement of solid body GET 94
92.2	Instruments measuring angular vibration and calibration devices	(0.1 - 100) Hz $(5 \cdot 10^{-5} - 1)$ rad $(1.5 \cdot 10^{-3} - 12)$ rad/s $(2 \cdot 10^{-1} - 350)$ rad/s ²	U° _{0.95} = 0.5 %	GOST R ISO 16063– 15–2012, comparison with reference angle transducer
92.3	Angular accelerometers	$(2 \cdot 10^{-1} - 500) \text{ rad/s}^2$	$U^{\circ}_{0.95} = 0.5 \%$	GOST R ISO 16063– 15–2012
92.4	Angular accelerometers	$(2 \cdot 10^{-1} - 5 \cdot 10^2) \text{ rad/s}^2$ $(0.5 - 1 \cdot 10^3) \text{ Hz}$	$U^{0}_{0.95} = 1 \%$	GOST R ISO 16063– 15–2012
		(ab. $5 \cdot 10^2 - 2 \cdot 10^3$) rad/s ² (0.5 - 1 \cdot 10^3) Hz	$U^{ m o}{}_{0.95}{=}2~\%$	
		$(10 - 1.10^4) \text{ rad/s}^2$ $(1.10^3 - 4.10^3) \text{ Hz}$	$U^{ m o}{}_{0.95}{=}1\%$	
		$(ab. 1\cdot 10^41\cdot 10^5) rad/s^2$ $(1\cdot 10^3 - 4\cdot 10^3) Hz$	$U^{0}_{0.95} = 3 \%$	
		(ab. $1 \cdot 10^5$ - $25 \cdot 10^4$) rad/s ² ($1 \cdot 10^3 - 4 \cdot 10^3$) Hz	$U^{\rm o}{}_{0.95} = 10$ %	
92.5	Tachometers, strobo- scopes, speed sensors	$(1 \cdot 10^{-2} - 1 \cdot 10^4)$ rad/s (0.01 - 99999.99) rpm	$U^{ m o}_{0.95}{=}0.01~\%$	Method of direct measurements using
92.6	Tachometers,	(0.1 – 600000) rpm	$U^{ m o}_{0.95} = 0.02$ %	state primary special
	stroboscopes, speed	$(1.10^{-2} - 6.10^4)$ rad/s	$U^{ m o}_{0.95} = 0.02$ %	of angular speed GET
	50115015	$(1 \cdot 10^{-2} - 2.5 \cdot 10^4)$ Hz	$U^{0}_{0.95} = 0.02 \%$	108
		(1·10 ⁻² – 100) m/s	$U^{\rm o}_{0.95} = 0.1$ %	
92.7	Calibrators, simulators of signals of primary speed converters	$(1 \cdot 10^{-2} - 2.5 \cdot 10^4)$ Hz	$U^{0}_{0.95} = 0.001 \ \%$	Method of direct measurements using frequency meter

1	2	3	4	5
92.8	Tachometric, taximetric verification setups	$(0.1 - 6.10^3)$ rad/s	$U^{\circ}_{0.95} = 0.01 \%$	Comparison with state secondary standard for the rotational speed unit
92.9	Instruments measuring angular speed, installations for reproducing angular speeds by the rotation method	(5·10 ⁻⁸ – 20) rad/s	U _{0.95} = 4.4·10 ⁻⁹ rad/s	Method of direct measurements using state primary special standard for the units of angular speed GET 108, comparison using comparator from the composition of the state primary special standard for the units of angular speed GET 108
92.10	Gyroscopic MI, angular speed sensors (AVS)	$(5.10^{-8} - 200)$ rad/s	$U_{0.95} = 4.4 \ 10^{-9} \mathrm{rad/s}$	Method of direct measurements using
92.11	Electromechanical meters	$(0.1 - 10^5)$ vol.	$U^{\rm o}_{0.95} = 0.01 \%$	GE1 108
93	Instruments measuring p	arameters of the state of th	ne Earth	1
93.1	Relative gravimeters	6000 mGal	$U_{0.95} = 5 \ \mu \text{Gal}$	Comparison with reference gravimeter
93.2	Absolute gravimeters	(9.77 – 9.85) m/s ² (977 – 985) Gal	$U_{0.95} = 5 \ \mu \text{Gal}$	Method of direct measurements using GET 190
93.3	Gravimetric polygons	g values (9.77 – 9.85) m/s ² (977 – 985) Gal values of differences g (0 – 500) 10 ⁻⁵ m/s ² (0 – 500) mGal, where g – free fall acceleration, m/s ²	$U_{0.95} = 10 \ \mu \text{Gal}$ $U_{0.95} = 10 \ \mu \text{Gal}$	Method of direct measurements using state primary standard for the units of acceleration in gravimetry GET 190
93.4	Measuring instruments and verification facilities for seismic vibration pa- rameters. Seismic receiv- ers and seismic transduc- ers	$(5 \cdot 10^{-7} - 1.0)$ m/s (0.001 - 1000) Hz f = 0.001 - 30 Hz, where f - frequency, Hz $X = 10^{-4} - 2 \cdot 10^{-2}$ m, where X is the amplitude of movement, m $V = 1 \cdot 10^{-7} - 1.0$ m/s, where V - speed amplitude, m/s $a = 4 \cdot 10^{-7} - 10$ m/s ² , where a - acceleration amplitude, m/s ²	$U^{ m o}_{0.95} = 0.01~\%$	Method of direct measurements using GET 159. Comparison with reference accelerometer
93.5	Seismometric installations	(1·10 ⁻⁶ -10) m/s ² (0.001-100) Hz	$U^{\rm o}_{0.95} = 0.01$ %	Comparison with reference accelerometer
94	Measuring instruments u	sed for transport		1
94.1	Decelerometers, friction coefficient meters	(0 – 9.81) m/s ² 0.00 – 1.00	$U^{o}_{0.95} = 0.1 \%$ $U^{o}_{0.95} = 1 \%$	Method of direct measurements using state working standard

1	2	3	4	5
				of the second class for the unit of linear acceleration.
94.2	Tachograph programmers. Instruments measuring and controlling the parameters of movement of vehicles	(0.1 – 999999.9) km (0 – 400) km/h (0 – 48) h	$U^{ m o}_{0.95}=0.05~\%$ $U_{0.95}=1~{ m km/h}$ $U_{0.95}=1~{ m s/day}$	Method of direct measurements using frequency meter
95	Instruments measuring to	orque force		
95.1	Torque force transducers, installations for reproducing torque force	(1 – 300) kN∙m	$U^{ m o}_{0.95} = 0.1$ %	GOST R 8. 796 "GMI Torque Meters. Verification procedure", APPENDIX A
96	Instruments measuring vi	bration parameters		
96.1	Secondary standards for the units of length, speed and acceleration in oscillatory motion of solid body	$\begin{array}{c} (1 \cdot 10^{-8} - 5 \cdot 10^{-2}) \text{ m} \\ (1 \cdot 10^{-4} - 1 \cdot 10^{-1}) \text{ m/s} \\ (1 \cdot 10^{-3} - 1 \cdot 10^{3}) \text{ m/s}^{2} \\ (2 \cdot 10^{1} - 8 \cdot 10^{2}) \text{ Hz} \end{array}$	$U^{0}_{0,95} = 0.3 \%$	GOST ISO 16063–11– 2013 GOST R 8.815–2013 MI 1929–2007
	oody	$(5 \cdot 10^{-1} - 2 \cdot 10^3)$ Hz	$U^{ m o}_{0,95} = 1.0$ %	
		$(5 \cdot 10^{-1} - 5 \cdot 10^3)$ Hz	$U^{\rm o}_{0,95} = 1.6$ %	
		$(1.10^{-1} - 1.10^4)$ Hz	$U^{\circ}_{0,95} = 3.0 \%$	
		$(1.10^{-1} - 2.10^4)$ Hz	$U^{\rm o}_{0,95} = 5.0$ %	
96.2	Vibration setups of the 1st class used for verification	$\begin{array}{c} (2 \cdot 10^{-8} - 1 \cdot 10^{-1}) \text{ m} \\ (1 \cdot 10^{-4} - 1 \cdot 10^{-1}) \text{ m/s} \\ (1 \cdot 10^{-1} - 1 \cdot 10^{3}) \text{ m/s}^{2} \\ (2 \cdot 10^{1} - 8 \cdot 10^{2}) \text{ Hz} \end{array}$	$U^{ m o}_{0,95} = 0.5$ %	GOST ISO 16063–11– 2013 GOST ISO 16063–21– 2013 MI 1020-2007
		$(5 \cdot 10^{-1} - 2 \cdot 10^3)$ Hz	$U^{0}_{0,95} = 1.0$ %	IVII 1929–2007
		$(5 \cdot 10^{-1} - 5 \cdot 10^3)$ Hz	$U^{ m o}_{0,95} = 2.0$ %	
		$(1.10^{-1} - 1.10^4)$ Hz	$U^{\circ}_{0,95} = 5.0 \%$	
		$(1 \cdot 10^{-1} - 2 \cdot 10^4)$ Hz	$U^{ m o}_{0,95} = 8.0$ %	
96.3	Vibrometers and vibration transducers of the 1st	$(1 - 1.10^4) \text{ m/s}^2$ $(2.10^1 - 8.10^2) \text{ Hz}$	$U^{ m o}_{0,95} = 0.4$ %	GOST ISO 16063–11– 2013
	class	$(5 \cdot 10^{-1} - 5 \cdot 10^3)$ Hz	$U^{ m o}_{0,95}{=}0.6~\%$	GOST ISO 16063–41–
		$(1.10^{-1} - 1.10^4)$ Hz	$U^{ m o}_{0,95}{=}0.8~\%$	SK 03–2520–029–
		$(1 \cdot 10^{-1} - 2 \cdot 10^4)$ Hz	$U^{ m o}_{0,95} = 1.0$ %	2009-Т
96.4	Vibration setups of the 2nd class used for verification	$\begin{array}{c} (2\cdot 10^{-8}-1\cdot 10^{-1}) \ m \\ (1\cdot 10^{-4}-1\cdot 10^{-1}) \ m/s \\ (1\cdot 10^{-1}-1\cdot 10^{3}) \ m/s^{2} \\ (2\cdot 10^{1}-8\cdot 10^{2}) \ Hz \end{array}$	$U^{ m o}_{0,95} = 2.0$ %	GOST ISO 16063–21– 2013 MI 1929–2007
		$(5 \cdot 10^{-1} - 2 \cdot 10^3)$ Hz	$U^{\circ}_{0,95} = 3.0 \%$	
		$(5 \cdot 10^{-1} - 5 \cdot 10^3)$ Hz	$U^{ m o}_{0,95} = 4.0$ %	
		$(1.10^{-1} - 1.10^4)$ Hz	$U^{\rm o}_{0,95} = 6.0$ %	
96.5	Vibrometers and vibration transducers	$(1 \cdot 10^{-7} - 1) \text{ m}$ $(1 \cdot 10^{-4} - 1) \text{ m/s}$ $(1 \cdot 10^{-3} - 1 \cdot 10^4) \text{ m/s}^2$	$U^{0}_{0,95} = 0.6 \%$	GOST ISO 16063–11– 2013 GOST ISO 16063–21– 2013

1	2	3	4	5
		$(1 \cdot 10^{-1} - 2 \cdot 10^4)$ Hz		SK 03–2520–029– 2009–T
96.6	Vibrometers and vibration transducers. Vibration measuring and control information systems	$(1 \cdot 10^{-8} - 1) \text{ m}$ $(1 \cdot 10^{-6} - 10) \text{ m/s}$ $(1 \cdot 10^{-5} - 1 \cdot 10^5) \text{ m/s}^2$ $(2 \cdot 10^1 - 8 \cdot 10^2) \text{ Hz}$	$U^{\rm o}_{0,95} = 1.2$ %	GOST ISO 16063–11– 2013 GOST ISO 16063–21– 2013 SK 03–2520–029–
		$(1 \cdot 10^{-1} - 2 \cdot 10^4)$ Hz	$U^{\rm o}_{0,95} = 5.0$ %	2009–T
96.7	Vibration analyzers	$\begin{array}{c} (1 \cdot 10^{-8} - 1) \text{ m} \\ (1 \cdot 10^{-6} - 10) \text{ m/s} \\ (1 \cdot 10^{-5} - 1 \cdot 10^5) \text{ m/s}^2 \\ (2 \cdot 10^1 - 8 \cdot 10^2) \text{ Hz} \end{array}$	$U^{\rm o}_{0,95} = 1.2$ %	GOST ISO 16063–11– 2013 GOST ISO 16063–21– 2013
		$(1 \cdot 10^{-1} - 2 \cdot 10^4)$ Hz	$U^{ m o}_{0,95} = 5.0$ %	SK 03-2520-029- 2009-T
96.8	Measuring charge amplifiers	$\begin{array}{c} (1{\cdot}10^{-2}-1{\cdot}10^4) \text{ mV/ pC} \\ (1{\cdot}10^{-1}-1{\cdot}10^5) \text{ Hz} \end{array}$	$U^{ m o}_{0,95} = 0.2$ %	SK 03–2520–029– 2009–T
97	Instruments measuring sl	nock acceleration paramet	ters	
97.1	Installations with parametric excitation of the 1st class	$(1 \cdot 10^1 - 4 \cdot 10^3) \text{ m/s}^2$ $(2 \cdot 10^2 - 5 \cdot 10^4) \text{ ms}$	$U^{\rm o}_{0,95} = 6.0$ %	GOST R ISO 16063– 13–2012 GOST R ISO 16063– 22–2012
97.2	Installations with a peak shock accelerometer of the 1st class	$(1 \cdot 10^1 - 1 \cdot 10^6) \text{ m/s}^2$ $(18 - 5 \cdot 10^4) \text{ ms}$	$U^{\rm o}_{0,95} = 6.0 \ \%$	GOST R ISO 16063– 13–2012 GOST R ISO 16063– 22–2012
97.3	Peak shock accelerometer installation of the 2 nd class	$(1 \cdot 10^1 - 1 \cdot 10^4) \text{ m/s}^2$ $(2 \cdot 10^2 - 5 \cdot 10^4) \text{ ms}$	$U^{\rm o}_{0,95} = 6.0$ %	GOST R ISO 16063– 22–2012
97.4	Shock accelerometers	$(1.10^{1} - 1.10^{6}) \text{ m/s}^{2}$ $(18 - 5.10^{4}) \text{ ms}$	$U^{\rm o}_{0,95} = 2.0 \%$	GOST R ISO 16063– 13–2012 GOST R ISO 16063– 22–2012
97.5	Instruments measuring shock speed	$(1 \cdot 10^{-1} - 3 \cdot 10^{1}) \text{ m/s}$	$U^{\rm o}_{0,95} = 3.0 \%$	GOST R ISO 16063– 13–2012 GOST R ISO 16063– 22–2012
97.6	Measuring charge amplifiers	$\begin{array}{c} (1{\cdot}10^{-2}-1{\cdot}10^4) \text{ mV/ pC} \\ (1{\cdot}10^{-1}-1{\cdot}10^5) \text{ Hz} \end{array}$	$U^{ m o}_{0,95}{=}0.2$ %	SK 03–2520–029– 2009–T
98	Instruments measuring s	peed of sound in liquid (ac	coustic measurements)	
98.1	Measuring channels of systems, stations, complexes, hydrological probes for measuring speed of sound propagation in liquid	(1402 – 1560) m/s	$U_{0.95} = 0.15 \text{ m/s}$	Method of indirect measurements in accordance with GSDS 202
MEAS	SUREMENTS OF FLOW,	FLOW SPEED, LEVEL,	VOLUME OF SUBSTAN	ICES
99	Instruments measuring w	ater flow speed		
99.1	Hydrodynamic measuring installation	(0.02 – 20.0) m/s	$U^{0}_{0,95} = 0.2 \%$	Direct measurement method
99.2	Measuring pools	(0.01 - 5.0) m/s	$U^{ m o}_{0,95} = 0.1$ %	Method of indirect measurements
99.3	Flow meters	(0.05 – 20) m/s	$U^{ m o}_{0,95} = 0.5$ %	Direct comparison

1	2	3	4	5
99.4	Laser flow meters	(0.005 – 25) m/s	$U^{ m o}_{0,95}{=}0.5~\%$	Method of indirect measurements
99.5	Hydrometric turntables	(0.05 - 5.0) m/s	$U^{ m o}_{0,95}{=}0.5~\%$	Direct comparison
100	Instruments measuring ai	ir flow speed		
100.1	Aerodynamic measuring instruments	(0.05 – 100) m/s	$U_{0.95} = (0.0006 + 0.01 \text{ V})$ m/s, where V – air flow speed, m/s	Direct comparison
100.2	Instruments measuring air flow speed	(0.05 – 100) m/s	$U_{0.95} = (0.0006 + 0.01V)$ m/s, where V – air flow speed, m/s	Direct comparison
100.3	Instruments measuring direction of the air flow	(0 – 360)°	$U_{0.95}=2^\circ$	Direct measurement method
100.4	Total and static pressure receivers	(1 – 100) m/s	$U_{0.95} = (0.0006 + 0.01 \text{ V})$ m/s, where V – air flow speed, m/s	Direct comparison
100.5	Anemometers	(0.05 – 80) m/s	$U_{0.95} = (0.0006 + 0.01V)$ m/s, where V – air flow speed, m/s	Direct comparison
101	Instruments measuring m	ass and volume, mass and	d volume flow speed	
101.1	Verification setups for verification of PTCC (piston tube calibration device) and compact	$(0.02 - 1.0) \text{ m}^3$ ab. $(1.0 - 45) \text{ m}^3$	$U^{ m o}_{0,95} = 0.01~\%$ $U^{ m o}_{0,95} = 0.02~\%$	Direct comparison comparison with comparator
101.2	Calibration PTCC, including compact provers	Nominal capacity of measuring section from 0.005 to 45 m ³	$U^{ m o}_{0,95} = 0.03~\%$ $U^{ m o}_{0,95} = 0.1~\%$	Direct comparison comparison with a comparator
101.3	Installations for calibration Instruments measuring volume and volume flow of liquid	Nominal capacity of the measuring section from 0.1 to 2.4 m ³ ab. 2.8 m ³ ab. 22.0 m ³ in the range	$U^{o}_{0,95} = 0.015 \%$ $U^{o}_{0,95} = 0.063 \%$ $U^{o}_{0,95} = 0.024 \%$	Method of indirect measurements Comparison with comparator
101.4	Installations for calibration of instruments measuring mass and mass flow of liquid	from 0.01 to 10000 m ³ /h from 0.01 to 2000 t/h from 0.01 to 10000 t/h	$U^{\circ}_{0,95} = 0.03 \%$ $U^{\circ}_{0,95} = 0.05 \%$	Method of indirect measurements
101.2	Calibration systems for filling liquids	from 0.5 to 3 t	$U^{\circ}_{0.95} = 0.04$ %	Direct measurement method
		from 0.5 to 3 m^3	$U^{ m o}_{0,95} = 0.05~\%$	method
101.6	Instruments measuring volume, volume flow	(0.012 – 320) m ³ /h	$U^{0}_{0.95} = 0.1 \%$	Direct comparison

1	2	3	4	5	
101.7	Instruments measuring mass, mass flow of liquid	(0.012 – 320) t/h	$U^{0}_{0,95} = 0.1 \%$	Direct comparison	
101.3	Liquid level measuring instruments for non– pressure pipelines	(0.001 – 6) m	$U_{0.95} = 2.0 \text{ mm}$	Direct comparison	
101.4	Fluid speed measuring instruments for non– pressure pipelines	(0.05 – 6.0) m/s	$U_{0.95} = 1.0\%$	Direct comparison	
101.5	Information processing devices for oil, gas and oil products metering systems: calculators for flow, volume and mass of liquid, measuring and computing systems, gas volume correctors, programmable control complexes	Input signals: (0.1 – 40000) Hz (0.4 – 20) mA (1 – 5) V (0 – 10) V	$U^{o}_{0.95} = 0.001 \%$ $U_{0.95} = 0.003 \text{ mA}$ $U_{0.95} = 0.005 \text{ V}$ $U_{0.95} = 0.005 \text{ V}$	Direct comparison	
101.6	Flow meters and gas	0.001 - 2000 m3/h	$U_{0.95} = 0.5$ %	Direct comparison	
	meters	$(2.0 \cdot 10^{-2} - 36) \text{ m}^{-3/3}\text{s}$	$U_{0.95} = 1.0$ %	Method of indirect measurements	
101.12	Measures of capacity: metal gauges, tank trucks	(3.0 - 50) m ³ (3.0 - 50) m ³	$U_{0.95} = 0.1 \ \% \ U_{0.95} = 0.5 \ \%$	Direct comparison	
102	Mechanical instruments r	neasuring air flow speed			
102.1	Measuring transducers and measuring channels of air speed of stationary, portable and remote multifunctional meteorological stations measuring air speed	(0.05 – 80) m/s	U _{0.95} = 1 rpm	Direct comparison with wind parameter generator (WPG)	
103	Instruments measuring le	vel of liquids			
103.1	Measuring channels of systems, stations, complexes for measuring	(0 – 40) m	$U_{0.95} = 5.77 \text{ mm}$	Direct comparison with hydrostatic pressure meter	
	level of liquids (water level on watercourses)	(40 – 90) m	$U_{0.95} = (0.115 \cdot (H + 10)) \text{ mm},$ where <i>H</i> is level value, m		
103.2	Measuring metal cups	$(0.001 - 3) \text{ m}^3$	$U_{0.95} = 0.006\%$	Method of indirect measurements	
PRESS	SURE MEASUREMENTS	, VACUUM MEASUREN	MENTS		
104 Instruments measuring variable pressure					
104.1	Secondary standards of the unit of pressure for the range of variable pressures	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz $(1 \cdot 10^{-5} - 10)$ s	$U^{ m o}_{0,95} = 1.0$ %	MP 2520–060–2014 SK 02–31–18.	
104.2	Harmonic pressure installation	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz	$U^{\rm o}_{0,95} = 6.0$ %	MP 2520–060–2014 SK 02–31–18.	
104.3	Intermittent pressure gauges	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz	$U^{ m o}_{0,95} = 1.5$ %	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18	

1	2	3	4	5
104.4	Pulse pressure gauges	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(1 \cdot 10^{-5} - 10)$ s	$U^{\rm o}_{0,95} = 1.5$ %	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18
104.5	Harmonic pressure generators	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz	$U^{ m o}_{0,95}{=}1.7~\%$	MP 2520–060–2014 SK 02–31–18
104.6	Pulse pressure generators	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(1 \cdot 10^{-5} - 10)$ s	$U^{\rm o}_{0.95} = 1.3$ %	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18
104.7	Harmonic pressure transducers and gauges	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz	$U^{\circ}_{0.95} = 3.0$ %	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18
104.8	Pulse pressure transducers and manometers	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(1 \cdot 10^{-5} - 10)$ s	$U^{\circ}_{0,95} = 3.0 \%$	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18
104.9	Intermittent pressure transducers and manometers	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz P_{st} to 5 MPa, where P_{st} - constant pressure, MPa	$U^{\rm o}_{0,95} = 3.0$ %	MK 2520–011–2006, MP 2520–019–2008, SK 02–31–18
104.10	Harmonic pressure generators	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz	$U^{\circ}_{0,95} = 3.5 \%$	MP 2520–060–2014 SK 02–31–18.
104.11	Pulse pressure generators	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(1 \cdot 10^{-5} - 10)$ s	$U^{\circ}_{0,95} = 3.5 \%$	MP 2520–060–2014 SK 02–31–18.
104.12	Intermittent pressure generators	$(1 \cdot 10^2 - 25 \cdot 10^6)$ Pa $(5 \cdot 10^{-1} - 1 \cdot 10^4)$ Hz P_{st} to 5 MPa, where P_{st} - constant pressure, MPa	$U^{\rm o}_{0,95} = 3.5$ %	MP 2520–060–2014 SK 02–31–18.
OPTIC	CAL-PHYSICAL MEASU	REMENTS		I
105	Instruments measuring en	nergy illumination by sola	r radiation	
105.1	Working standards of the 2nd class; actinometers, pyranometers; measuring channels of systems, stations and complexes	$(10 - 1600) \text{ W/m}^2$	U° _{0.95} = 1.5 %	Direct comparison with reference pyrheliometer
ELEM	ENTS OF MEASURING	SYSTEMS (MS)		
106	Measuring systems and e	lements of measuring syst	ems	Γ
106.1	Measuring multichannel systems for measuring hydrological parameters of the aquatic environment of seas and oceans, including : marine and oceanological sounding devices and profilers, measuring hydrological equipment of drifting, towed, automatic, manned and autonomous surface underwater vehicles with measuring channels and measuring transducers	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)

1	2	3	4	5
106.2	Multichannel measuring systems and complexes for measuring meteorological parameters of air environment (surface layer of the atmosphere), including : measuring equipment of automatic and manned meteorological stations for synoptic observations (weather stations), profilometers, equipment for meteorological support of land and sea–based aviation, ship weather stations with measuring channels and measuring transducers	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)
106.3	Measuring systems, mobile measuring complexes, measuring channels (using, inter alia, joint, cumulative and indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)	In accordance with the scope of accreditation for all types of measurements (including indirect measurements)
	19, Chayinoye ozer	o Str., Toksovo 188664, V	sevolozhsk district, St. Pe	tersburg
ELEC'	TRICAL AND MAGNET	IC MEASUREMENTS		
107	Measuring instruments for	or magnetic quantities	Ι	1
107.1	Instruments measuring	$(1.10^{-8} - 1.10^{-6}) T$	$U^{0}_{0,95} = 0.3 \text{ nTl}$	with GET 12
	De magnetie medetion	$(1\cdot 10^{-6} - 1\cdot 10^{-3}) \mathrm{T}$	$U^{0}_{0,95} = 0.06 \text{ nTl}$	with OL1 12
		$(1.10^{-6} - 1.10^{-5})$ T/A	$U^{0}_{0,95} = 0.1 \%$	
		$(0 \pm 4); (90 \pm 4)$	$U_{0.95} = 6'$	
		$(1.10^{-5} - 1.10^{-3})$ T/A	$U^{0}_{0,95} = 0.001 \%$	
		$(0 \pm 4); (90 \pm 4)$	$U_{0.95} = 6'$	
		$(1 \cdot 10^{-3} - 5 \cdot 10^{-2}) \text{ T/A}$	$U^{0}_{0,95} = 0.01 \%$	
		(0 ± 4) ; (90 ± 4)	$U_{0.95} = 6'$	
107.2	Instruments measuring magnetic moment	$\begin{array}{c} (1 \cdot 10^{-6} - 10^3) \ \text{A} \cdot \text{m}^2 \\ (1 \cdot 10^{-5} - 3 \cdot 10^{-2}) \\ \text{Wb}/(\text{A} \cdot \text{m}^2) \\ (1 \cdot 10^{-4} - 30) \\ (\text{A} \cdot \text{m}^2)/\text{A} \end{array}$	$U^{0}_{0,95} = 0.3 \%$	Method of indirect measurements and comparisons with GET 12
107.3	Instruments measuring magnetic susceptibility	$1 \cdot 10^{-5} - 10$	$U^{\rm o}_{0,95} = 1.5$ %	Method of indirect measurements and
	and magnetic permeability of para–, dia– and weak ferromagnetic materials	1 – 20	$U^{\rm o}_{0.95} = 0.5 \ \%$	comparisons with GET

1	2	3	4	5
ELEM	ENTS OF MEASURING	SYSTEMS (MS)		
108	Measuring systems and el	ements of measuring syst	ems	
108.1	Measuring systems,	In accordance with the	In accordance with the	In accordance with the
	mobile measuring complexes, measuring	scope of accreditation for all types of measurements	scope of accreditation for all types of measurements (including indirect	scope of accreditation for all types of
	joint, cumulative and indirect measurements)	measurements)	measurements)	(including indirect measurements)
	Sosnovka	Park, Vyborgsky Distric	t, 194354, St. Petersburg	
GEOM	IETRIC MEASUREMEN	rs	.,	
109	Length measuring instru	nents		
109.1	Distance meters	to 3500 m	$U = O^{1} O^{1}$	SK 02 251 40/20 T
109.1		to 5500 m	$U_{0.95} = Q^{-1} [0.9],$ 1.7·10 ⁻⁶ L] mm, where L = length mm	SK 03-231-40/20-1
109.2	Electronic tacheometers	to 10000 m	$U_{0.05} - O^{1} [0.9]$	SK 03_251_40/20_T
109.2		10 10000 III	$U_{0.95} = Q^{-1}[0.9, 1.7 \cdot 10^{-6}L] \text{ mm},$	SK 05-251-40/20-1
	20/5 B Kozhov	annava lina Vacilvavsky I	sland 190106 St Patarsh	ura
FLFC	TDICAL AND MACNETI	C MEASUDEMENTS	Sianu, 179100, St. 1 etci sb	urg,
ELEC	INICAL AND MAGNET	c MEASUREMENTS	ling transformation of sin	usaidal aurmant
110	Cumont transformana	$(5 - 5000) \wedge (1 + 5 \wedge 100)$	$L^{10} = 0.01 \text{ eV}$	Comparison with
110.1	Current transformers	(50; 60) Hz	$U_{0.95}^{-} = 0.01\%$	reference current transformer
111	Instruments measuring el	ectrical resistance		
111.1	DC and AC shunts	$(6.10^{-6} - 800) \Omega$	$U^{\rm o}_{0.95} = 0.01$ %	Method of direct
		1 mA – 10 kA 50 Hz – 100 kHz		measurements. Comparison method
				using comparator
112	Instruments measuring v	oltage and electrical voltage	ge ratios	
112.1	Capacitive large-scale	$(6 - 330/\sqrt{3}) \text{ kV}/$	$U^{\rm o}_{0.95} = 0.01$ %	Current comparator
	voltage converters measuring high–voltage	(100/3 – 230) V (50; 60) Hz		method. Comparison method
112.2	Voltage transformers	$(1 - 330/\sqrt{3}) \text{ kV}/$ (100/3 - 230) V (50; 60) Hz	$U^{\rm o}_{0.95} = 0.01 \ \%$	Current comparator method. Comparison method
ELEM	ENTS OF MEASURING	SYSTEMS (MS)		
113	Measuring systems and e	ements of measuring syst	ems	
113.1	Measuring systems,	In accordance with the	In accordance with the	In accordance with the
	mobile measuring	scope of accreditation for all types of measurements	scope of accreditation for all types of measurements	scope of accreditation for all types of
	channels (using, inter alia,	(including indirect	(including indirect	measurements
	joint, cumulative and	measurements)	measurements)	(including indirect
	indirect measurements)			measurements)
	2, Upper Poo	lstepnovka, Volzhsky dist	rict, 443004, Samara regio	n
MEAS	UREMENTS OF FLOW,	FLOW RATE, LEVEL, V	OLUME OF SUBSTANC	CES
114	Measuring instruments for	or volume and volume flow	W	
114.1	Flowmeters, meters and	$(0.0025 - 7.5) \text{ m}^3/\text{h}$	$U_{0.95} = 0.02$ %	Direct comparison
	converters of volume and volume flow of liquids	$(0.05 - 40) \text{ m}^3/\text{h}$ $(0.9 - 500) \text{ m}^3/\text{h}$	$U^{ m o}_{0.95}{=}0.02~\%$ $U^{ m o}_{0.95}{=}0.015~\%$	

1	2	3	4	5
		$(2.5 - 10000) \text{ m}^3/\text{h}$ when using section with a volume of 2.8 m ³	$U^{\circ}_{0.95} = 0.063 \%$	
		(2.5 – 10000) m ³ /h when using section with a volume of 22 m ³	$U^{ m o}_{0.95} = 0.024$ %	
	167,	, Volchanskaya Str., Belgo		
MEAS SUBST	UREMENT OF PARAMI TANCES	ETERS OF FLOW, FLOV	V RATE, LEVEL, VOLU	ME OF
115	Measuring instruments for	or mass and volume, mass	and volume flow rate	
115.1	Flowmeters, meters and converters of volume and volume flow of liquids	(4 – 3100) m ³ /h	$U_{0.95}{=}0.1$ %	Direct comparison
115.2	Mobile installations Fuel dispensers Oil dispensers	(5 – 160) l/min (5 – 160) l/min (5 – 160) l/min	$U_{0.95}=0.1~\%\ U_{0.95}=1.0~\%\ U_{0.95}=1.0~\%$	Direct comparison
115.3	Oil and oil products metering systems and installations	$(20 - 800) \text{ m}^3/\text{h}$	$U_{0.95} = 0.25$ %	Method of indirect measurements Direct comparison Direct comparison
	Piston provers (PP) as a part of CQCS (crude quality control system)	$(20 - 800) \text{ m}^3/\text{h}$	$U_{0.95} = 0.03$ %	
	Loading systems	$(20 - 800) \text{ m}^3/\text{h}$	$U_{0.95} = 0.15$ %	
115.4	Verification setups for verification of PPs, compact provers	$(0.02 - 40) \text{ m}^3$ $(0.02 - 40) \text{ m}^3$	$U^{\circ}_{0,95} = 0.03 \%$ $U^{\circ}_{0,95} = 0.1 \%$	Direct comparison Comparison with comparator
115.5	Instruments measuring Volume, volume flow	(20 – 800) m ³ /h	$U_{0.95} = 0.1$ %	Direct comparison
115.6	Instruments measuring mass, mass flow of liquid	(20 – 800) t/h	$U_{0.95} = 0.15$ %	Method of indirect measurements
	3–7 Zh, 2	4 th Line, Vasilyevsky Islan	d, 199106 St. Petersburg	
ELEC	FRICAL AND MAGNET	IC MEASUREMENTS		
116	Instruments measuring v	oltage and electrical voltag	ge ratios	1
116.1	Voltage dividers and converters, high voltage	K = (1 - 10000) AC voltage (1 - 165) kV DC voltage	U° =(0.1 – 5) %	Current comparator method. Comparison method
		(0.1 – 165) kV	$U^{\circ} = (0.1 - 5) \%$	
116.2	High voltage measuring systems, kilovoltmeters	AC voltage (1 - 165) kV DC voltage (0.1 - 165) kV	$U^{o} = (0.2 - 5)\%$ $U^{o} = (0.2 - 5)\%$	Direct measurement method
		(0.1 103) KV	0 = (0.2 - 3) / 0	

1	2	3	4	5					
117	Instruments measuring amount of electricity (electric charge)								
117.1	Partial discharge meters and calibrators	1 pC – 10 pC	U°0.95=1 pC	Method of direct measurements. Method					
	Apparent charge calibrators	from 11 pC to 10 nC	U°0,95 = 1 %	of indirect measurements					

Director General D.I. Mendeleyev Institute for Metrology

signature

A.N. Pronin initials, surname

¹⁾Q [a, b] denotes the square root of the sum of the squares of the terms in brackets.

²⁾ The Note indicates the implemented methods (procedures) of calibration. If the designation of the document establishing the calibration method(s) is dated, only that particular method is used. If the designation of the document establishing a method (procedure) of calibration is not dated, the latest edition of the specified method (including any changes) is used.

³) The expanded measurement uncertainty is expressed in accordance with ILAC – P 14 and EA –4/02, it is a part of the CMC and represents the smallest expanded uncertainty achievable for the best available calibration item. The coverage probability corresponds to approximately 95%, and the coverage factor k = 2, unless otherwise indicated. Uncertainty values without units of quantity are relative with respect to the measured value of the quantity, unless otherwise indicated.

Subrange, V	Expanded uncertainty, %
10 ⁻⁶	1.10-1
10 ⁻⁵	1.10-1
10 ⁻⁴	1.10-2
10 ⁻³	1.10-3
10 ⁻²	2.10-4
10-1	2.10-4
1	2.10-4
101	2.10-4
10 ²	2.10-4
103	2.10-4

Matrix 1.1 DC voltage sources and meters

Matrix 2.1 DC sources and meters

Subranga A	Expanded uncertainty
Subrange, A	(measured/reproduced), %
10 ⁻¹⁶	5/5
10 ⁻¹⁵	2/2
10 ⁻¹⁴	0.5/0.5
10 ⁻¹³	0.4/0.4
10 ⁻¹²	0.3/0.3
10 ⁻¹¹	0.2/0.2
10 ⁻¹⁰	0.1/0.1
10-9	0.05/0.05
10 ⁻⁸	0.03/0.03
10 ⁻⁷	0.01/0.01
10 ⁻⁶	0.006/0.008
10 ⁻⁵	0.004/0.01
10-4	0.003/0.005
10 ⁻³	0.001/0.001
10 ⁻²	0.001/0.001
10 ⁻¹	0.002/0.002
1	0.003/0.003
10	0.005/0.005
30	0.01/0.01

					The value of	the relati	ve expand	led uncertai	inty, μV/V,	at a freque	ncy			
Voltage, V	10 Hz	20 Hz	100 Hz	400 Hz	ab. 0.4 kHz to 10 kHz	20 kHz	50 kHz	100 kHz	300 kHz	500 kHz	1 MHz	10 MHz	20 MHz	30 MHz
0.1	88	56	38	38	44	50	56	63	75	100	120	240	590	1000
0.3	75	44	25	25	31	38	44	56	69	88	100	220	520	650
0.5	63	31	20	20	25	31	38	44	50	75	88	200	455	585
1	50	25	15	15	19	25	31	38	44	69	81	130	390	520
3	50	25	10	10	15	25	31	38	44	69	81	130	390	520
5	38	25	10	10	15	20	25	35	38	44	75	160	420	550
10	38	25	15	15	19	25	35	38	44	50	69	200	455	585
20	38	25	15	15	19	25	35	38	44	50	69	200	455	585
30	50	38	20	19	25	35	38	44	100	120	200	260	520	650
50	50	38	20	19	25	35	38	44						
100	63	38	25	25	31	38	44	50						
200	69	50	25	25	31	38	44	50						
300	75	50	38	38	44	50	56	63						
500	88	63	38	38	44	50	56	63						
700	100	75	50	50	56	63	69	75						
1000	125	75	50	50	56	63	69	75						

Matrix 3.1 Thermoelectric voltage converters

		Value of the relative expanded uncertainty, $\mu V/V$, at a frequency												
Voltage, V	10 Hz	20 Hz	100 Hz	400 Hz	ab. 0.4 kHz to 10 kHz	20 kHz	50 kHz	100 kHz	300 kHz	500 kHz	1 MHz			
0.1	188	94	75	75	88	100	113	125	150	200	225			
0.3	150	88	50	50	63	75	88	113	138	175	200			
0.5	125	88	38	38	50	63	75	88	100	150	175			
1	100	63	25	25	38	50	63	75	88	138	163			
3	100	63	25	25	25	50	63	75	88	138	163			
5	100	63	25	25	25	38	50	63	75	88	150			
10	100	63	25	25	38	50	63	75	88	100	138			
20	113	75	25	25	38	50	63	75	88	100	138			
30	113	100	38	38	50	63	75	88						
50	113	100	38	38	50	63	75	88						
100	125	100	50	50	63	75	88	100						
200	150	125	50	50	63	75	88	100						
300	175	125	75	75	88	100	113	125						
500	188	150	75	75	88	100	113	125						
700	200	163	100	100	113	125	138	150						
1000	250	163	100	100	113	125	138	150						

Matrix 3.2 Calibrators

Voltago V	Value of relative expanded uncertainty, mV/V, at frequency										
voltage, v	30 MHz	100 MHz	200 MHz	400 MHz	600 MHz	800 MHz	1000 MHz	1500 MHz	2000 MHz		
0.1	3	3	4	5	7	eight	9	12	20		
0.3	2	2	2	3	4	6	8	9	20		
0.5	1	1	1	2	3	5	7	7	20		
1	1	1	1	1	3	4	5	8	20		
3	2	2	2	3	3	5	7	10	20		
5	7	2	3	4	4	5	7				
10	14	2	3	4	4	6	8				

			The	value c	of the relati	ve expa	anded u	incertain	ty, μV/V	⁷ , at a fre	equency	7	
Voltage, V	10 Hz	20 Hz	100 Hz	400 Hz	ab. 0.4 kHz to 10 kHz	20 kHz	50 kHz	100 kHz	300 kHz	500 kHz	1 MH z	10 MHz	30 MHz
0.1	188	94	75	75	88	100	113	125	150	200	225	2	
0.3	150	88	50	50	63	75	88	113	138	175	200		
0.5	125	88	38	38	50	63	75	88	100	150	175		
1	100	63	25	25	38	50	63	75	88	138	163		
3	100	63	20	20	25	50	63	75	88	138	163		
5	100	63	20	20	25	38	50	63	75	88	150		
10	100	63	25	25	38	50	63	75	88	100	138		
20	113	75	25	25	38	50	63	75	88	100	138		
30	113	100	38	38	50	63	75	88					
50	113	100	38	38	50	63	75	88					
100	125	100	50	50	63	75	88	100					
200	150	125	50	50	63	75	88	100					
300	175	125	75	75	88	100	113	125					
500	188	150	75	75	88	100	113	125					
700	200	163	100	100	113	125	138	150					
1000	250	163	100	100	113	125	138	150]				

Matrix 3.3 Voltmeters

		Value of relative expanded uncertainty, mV/V, at frequency											
Voltage, V	30	100	200	400	600	800	1000	1500	2000				
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz				
0.1	6	ten	12	14	16	17	20	48	72				
0.3	4	6	8	10	11	14	17	30	48				
1	2	4	4	5	6	8	12	24	36				
3	2	4	5	5	7	9	13	30	48				
10	2	5	5	6	7	10	14	36	60				

Matrix 4.1 Transducers, calibrators, ammeters

Cumont A		Value of rela	tive expanded	uncertainty, µA	A/A, at frequent	ey
Current, A	20 Hz	1 kHz	10 kHz	50 kHz	100 kHz	1MHz
0.001	15	15	20	26	40	75
0.01	15	15	20	26	40	75
0.02	15	15	20	26	40	75
0.05	20	20	26	40	52	90
0.1	20	20	26	40	52	90
0.2	26	26	40	52	104	
0.5	40	40	52	78	130	
1	52	52	65	104	156	
2	65	65	78	130	182	
5	78	78	91	156	208	
10	91	91	104	182	234	
25	104	104	130	208	260	

Current A	Value of relative expanded uncertainty, $\mu A/A$, at frequency										
Current, A	10 Hz	20 Hz	1 kHz	10 kHz	50 kHz	100 kHz					
0.001	40	15	15	20	26	40					
0.01	40	15	15	20	26	40					
0.02	40	15	15	20	26	40					
0.05	60	20	20	26	40	52					
0.1	60	20	20	26	40	52					
0.2	70	26	26	40	52	104					
0.5	90	40	40	52	78	150					
1	120	52	52	65	104	156					
2	140	65	65	78	150	182					
5	170	78	78	91	156	208					
10	200	91	91	104	182	234					
20	220	104	104	130	208	260					
50	250	117	117	156	234	286					
100	260	130	130	195	260	350					

Matrix 4.2 AC Shunts